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Abstract The impact of a cosmic time evolution of the
gravitational constant on SN Ia luminosity and AGN/QSO
luminosity functions is studied. The gravitational constant
scales linearly with the Hubble parameter, its present-day
variation being Ġ0/G0 ≈ 1.9 × 10−4 Gyr−1, compatible
with current bounds from lunar laser ranging. Distance mod-
uli of Type Ia supernovae are fitted with a cosmic expan-
sion factor derived from temperature variations of plane-
tary paleoclimates, and a luminosity dependence on look-
back time proportional to the varying gravitational constant
is inferred from the Hubble diagram. A fit is performed to
the comoving space density of X-ray-selected active galac-
tic nuclei (AGNs) and optically selected quasars (QSOs)
extending to redshifts z ≈ 6. The initial steep increase of
the AGN space density is reproduced by a redshift evolu-
tion depending solely on the Hubble parameter as scaling
variable. The AGN luminosity scales with the Hubble pa-
rameter, and the scaling exponents of the luminosity func-
tion, composed of two competing power laws with expo-
nential cutoff, are obtained. Based on the AGN luminosity
function, flux-limited X-ray source counts are investigated.
The counting functions are derived and put to test by fit-
ting cumulative number counts of soft X-ray point sources
compiled from ROSAT, XMM-Newton, and Chandra sur-
veys.
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1 Introduction

We study a cosmic time scaling of Newton’s constant
proportional to the Hubble parameter, G ∝ H(z), based
on the constancy of the moderate dimensionless ratio
�

2H0/(G0cm
3
π ) where mπ stands for the pion mass. The

context is an open Robertson–Walker cosmology with an
expansion factor capable of explaining the “faint young sun
paradox” (Newman and Rood 1977; Kasting and Catling
2003; Tomaschitz 2005) and resulting in a very small
present-day variation Ḣ0/H0 = Ġ0/G0 ≈ 1.9×10−4 Gyr−1.
The Hubble parameter is employed as universal scaling
variable, determining the redshift evolution of the gravi-
tational constant as well as of SN Ia and AGN luminosi-
ties. The motivation is Dirac’s hypothesis that moderate di-
mensionless ratios composed of the fundamental constants
stay constant in the cosmic evolution, whereas large ratios
vary with time, having been small in the past (Dirac 1938;
Dyson 1972).

We start with a Hubble diagram of Type Ia supernovae
extending to redshifts z ≈ 1.75 (Riess et al. 2007; Wood-
Vasey et al. 2007). The scaling exponent of the luminos-
ity L ∝ H−λ(z) is treated as a fitting parameter, and we
find a linear dependence of the SN Ia luminosity on the
Hubble parameter, reminiscent of the metallicity correction
to SN Ia magnitudes suggested in Gallagher et al. (2008).
We then turn to the redshift scaling of the AGN luminos-
ity function, and perform a fit to the comoving AGN/QSO
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space density (Hasinger et al. 2005; Silverman et al. 2005;
Richards et al. 2006). Finally, we perform a fit to sev-
eral ROSAT, XMM-Newton, and Chandra number counts
of soft X-ray point sources (Brunner et al. 2008; Car-
rera et al. 2007; Cappelluti et al. 2009; Elvis et al. 2009),
which provides a test of the scaling exponents of the lu-
minosity function used in the fit of the AGN space den-
sity.

In Sect. 2, we briefly sketch the general formalism, start-
ing with a Robertson–Walker line element and a negatively
curved open 3-space. We discuss the parametrization of
the cosmic expansion factor in terms of asymptotic expo-
nents defining the early and late stage of the expansion,
as well as the corresponding Hubble parameter, the lumi-
nosity distance, and the flux-redshift relation. The redshift
scaling G ∝ H(z) of the gravitational constant is inferred
from the constant ratio 4π�

2H0/(G0cm
3
π ) ≈ 1. The second

moderate dimensionless ratio considered is G0LG,0/υ
5
G,0,

where LG,0 denotes the Galactic luminosity and υG,0 the
velocity of the Galaxy in the microwave background. (Zero
subscripts indicate present-day values.) The constancy of
this ratio suggests a redshift evolution of galactic luminosi-
ties affecting the AGN space density (see Sect. 5) as well
as the number counts of X-ray point sources studied in
Sect. 6.

In Sect. 3, we perform the redshift parametrization of the
comoving distance, luminosity distance, and Hubble para-
meter, and calculate their high-z asymptotics. In Sect. 4, we
derive the low-z expansions of these quantities, as well as
their ascending series in look-back time, and we plot the
Hubble diagram for a compilation of SN Ia distance mod-
uli, from which the Type Ia luminosity scaling ∝ H(z) is
inferred.

The comoving space density of active galactic nuclei
(AGNs) and quasars (QSOs) is studied in Sect. 5. The red-
shift evolution of the AGN luminosity function is related to
a third moderate ratio, G0ρm/H 2

0 , involving the present-day
mass density ρm of the universe. We show that the AGN
space density, in particular, its initial steep increase, can be
fitted with scaling exponents ensuring the constancy of this
ratio.

Flux-limited number counts of X-ray point sources are
investigated in Sect. 6. The differential and cumulative
counts are derived from the luminosity function studied
in Sect. 5. We discuss the high-flux and low-flux asymp-
totics of the counting functions, and derive a numerically
efficient integral representation of the crossover. The cumu-
lative counting function is fitted to a compilation of source
counts in the soft X-ray band, with scaling exponents ex-
tracted from the AGN space density. In Sect. 7, we summa-
rize our conclusions.

2 Gravitational constant and Hubble parameter:
scaling relations derived from the constancy of
moderate dimensionless ratios

We consider an open Robertson–Walker cosmology with
line element (Sandage 1988)

ds2 = −c2 dτ 2 + a2(τ )dσ 2,
(2.1)

dσ 2 = 4
(
1 − |x|2/R2)−2 dx2,

where dσ 2 is the metric of the ball model of hyperbolic
geometry, |x| < R. The curvature radius of the negatively
curved open 3-space is a(τ)R. Without loss of generality,
we set a(τ0) = 1, so that the sectional 3-space curvature at
the present epoch τ0 is −1/R2. The following discussion re-
mains valid for a Euclidean 3-space geometry, R → ∞. The
factor of 4 in (2.1) is customary in hyperbolic geometry, re-
sulting in a sectional curvature of −1/(a(τ )R)2, and can be
removed by a rescaling of the length unit. Recent Wilkin-
son Microwave Anisotropy Probe (WMAP) and Sloan Dig-
ital Sky Survey (SDSS) estimates of the baryon and total
matter densities have revived the interest in testing neg-
atively curved 3-space geometries (Komatsu et al. 2009;
Reid et al. 2009; Percival et al. 2009; Kessler et al. 2009).

The ascending series of the dimensionless scale factor
a(τ) reads

a(τ) = 1 + � − (q0/2)�2 + (p0/6)�3 + · · · , (2.2)

where we use the shortcut � := H0 · (τ − τ0). Subscript ze-
ros refer to the present epoch τ0, so that H0 = H(τ0), where
H(τ) = ȧ(τ )/a(τ ) is the Hubble parameter. The second or-
der in (2.2) is determined by the (deceleration) parameter
q0 = −ä0/ȧ

2
0 , and the third by p0 = a

(3)
0 /ȧ3

0 . Present epoch
(absorption time) and emission time are denoted by τ0 and
τ1, respectively, so that τ0 > τ1. We will use the rescaled
dimensionless look-back interval �1 = H0 · (τ1 − τ0); the
look-back time is τ0 − τ1, so that �1 is negative.

The present-day gravitational constant is G0 ≈ 6.707 ×
10−45

�c5 MeV−2 (Amsler et al. 2008). The constancy of the
moderate ratio (Tomaschitz 2000)

�
2H0

G0cm3
π

≈ 1

4π
(2.3)

requires the variation of the gravitational constant to be pro-
portional to the Hubble parameter,

G(τ)

G0
= H(τ)

H0
. (2.4)

The pion mass, mπ ≈ 139.567 MeV/c2, is constant in the
cosmic evolution, and so is Planck’s constant and the speed
of light. Particle masses, the fine structure constant, and the
subatomic interaction constants are kept constant, in contrast
to Dirac’s large numbers hypothesis (Dirac 1938). There are
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stringent bounds on the variation of these constants, coming
from various quarters of physics, which make a time varia-
tion within the age of the Earth unlikely (Tomaschitz 1998,
2000). The numerical relation (2.3) is satisfied by choosing
H0 = h0/(9.7781 Gyr) with h0 ≈ 0.6802, so that H−1

0 ≈
14.375 Gyr. Some observational estimates of h0 are quite
close to this value (Ferrarese et al. 2000; Jimenez et al. 2003;
Sandage et al. 2006; Reid et al. 2009; Percival et al. 2009).
Conversions are based on c/H0 ≈ 2.9979 × 103/h0 Mpc
and 1 Gyr ≈ 3.1557 × 1016 s.

An excellent estimate of the deceleration parameter q0 is
obtained from bounds on the present-day logarithmic deriv-
ative of G, such as |Ġ0/G0| < 1.6 × 10−3 Gyr−1 inferred
from helioseismology (Guenther et al. 1998). The tightest
bounds are obtained from lunar laser ranging, (4 ± 9) ×
10−4 Gyr−1 (Williams et al. 2006) and (2±7)×10−4 Gyr−1

(Müller and Biskupek 2007). These bounds suggests a q0

very close to −1 by virtue of, see (2.4),

Ġ0/G0 = −H0ε, ε := 1 + q0. (2.5)

The bound of 2 × 10−4 Gyr−1 implies |ε| < 2.9 × 10−3.
We study a specific class of expansion factors (Toma-

schitz 2005),

a(τ) = A0τ
β sinhα(ητ/τ0), (2.6)

describing the crossover from an initial power law, ∝ τα+β ,
to exponential expansion, ∝ τβeαητ , in the final stage.
The parameters α and η are positive, and γ := α + β ≥ 0.
The latter condition is required for expansion, that is,
ȧ(τ ) > 0 throughout the evolution. The normalization A0 :=
1/(τ

β

0 sinhα η) gives a(τ0) = 1. The logarithmic derivative
of (2.6) is

H(τ) = αη

τ0
coth

(
η

τ

τ0

)
+ β

τ
. (2.7)

If γ > 0, we find H(τ → 0) ∼ γ /τ and H(τ → ∞) ∼
αη/τ0. As mentioned, γ = α + β , and we define n := 1/γ

for future reference.
The parameters τ0, q0, and p0 in the ascending series

(2.2) are related to the expansion factor (2.6) as

H0τ0 = αη cothη + β, (2.8)

ε := q0 + 1 = 1

(H0τ0)2

(
αη2

sinh2 η
+ β

)
, (2.9)

δ := p0 − 1 = 2

(H0τ0)3

(
αη3 cothη

sinh2 η
+ β

)
− 3ε. (2.10)

Paleoclimatic estimates of planetary surface temperatures
were used in Tomaschitz (2005) to single out the expansion
factor defined by

α = 1, β = −1/2, η = 3/2, (2.11)

so that H0τ0 ≈ 1.1572, see (2.8). This results in a cosmic age
of τ0 ≈ 16.635 Gyr and a deceleration parameter defined by
ε ≈ −2.786×10−3, see (2.9), which determines the present-
day logarithmic derivative, Ġ0/G0 ≈ 1.938 × 10−4 Gyr−1,
according to (2.5). For comparison, the averaged Th/Eu age
of three M15 giants is estimated as 14±3 Gyr (Sneden et al.
2000), and the age of the halo star CS 31082–001 is 15.5 ±
3.2 Gyr inferred from U/Th production ratios (Schatz et al.
2002; Cowan and Sneden 2006). A combined estimate based
on U/Th abundance ratios in meteorites and halo stars gives
a Galactic age of 14.5+2.8

−2.2 Gyr (Dauphas 2005).
The derivative of the Hubble parameter (2.7) reads

Ḣ (τ ) = −αη2

τ 2
0

1

sinh2(ητ/τ0)
− β

τ 2
, (2.12)

so that Ḣ (τ → 0) ∼ −γ /τ 2 and Ḣ (τ → ∞) ∼ −β/τ 2. The
comoving distance between emission at τ1 and absorption at
τ0 is (Sandage 1988, 1995)

D(τ0, τ1) := c

∫ τ0

τ1

dτ

a(τ)
. (2.13)

This is the metric distance at absorption time τ0, according
to the line element dσ 2 in (2.1); the distance at emission
time is a(τ1)D(τ0, τ1). D(τ0, τ1) is regarded as a function
of τ0 and redshift (rather than τ1), by inversion of

a(τ1) = 1/(1 + z), (2.14)

and a(τ0) = 1 is assumed here. We write D(z) as a shortcut
for D(τ0, τ1(z)), suppressing the argument τ0. Differentiat-
ing (2.13) and (2.14), we find the identities

dz

dτ1
= −H(τ1)

a(τ1)
, H(τ1)τ

′
1(z) = − 1

1 + z
. (2.15)

As for the comoving distance,

dD

dτ1
= − c

a(τ1)
, D′(z) = c

H(τ1)
,

(2.16)

D(z) = c

∫ z

0

dz

H(z)
.

Writing H(z) as a shortcut for H(τ1(z)), we obtain, see
(2.7), (2.12), and (2.15),

H ′(z) = − 1

1 + z

Ḣ (τ1)

H(τ1)
, (2.17)

which allows us to calculate the redshift derivative of the
Hubble parameter without invoking the derivative of τ1(z).
This is convenient, since τ1(z) is found by numerical inver-
sion of the expansion factor, see (3.1).

We introduce the normalized Hubble parameter h(z) :=
H(z)/H0, and write the curvature radius as R =: R̂c/H0,
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so that R̂ is just the present-day curvature radius in units of
c/H0. Hence, see (2.16),

D′(z)
R

= 1

R̂h(z)
,

D(z)

R
= 1

R̂

∫ z

0

dz

h(z)
. (2.18)

The area of a sphere of radius D in hyperbolic space is

area(D) = 4πR2 sinh2(D/R), (2.19)

and the enclosed volume reads

V (D) =
∫ D

0
area(D)dD = πR3

(
sinh

2D

R
− 2D

R

)
.

(2.20)

The curvature radius R and the comoving distance D(z)

as well as the comoving volume V (D(z)) are present-
day values at τ0. At emission time τ1, the line element
of the 3-space is a2(τ1)dσ 2, and the curvature radius is
a(τ1)R, see (2.1). The area of a hyperbolic sphere scales
as a2(τ1)area(D), and the volume of a redshift shell dz as
a3(τ1(z))dV (D(z)), where dV (D) = area(D)dD.

The intrinsic luminosity Lb of a source is related to the
apparent flux Sb by the flux-redshift relation

Sb = Lb

4πd2
L

, dL(z) := (1 + z)R sinh
D(z)

R
, (2.21)

where dL is the luminosity distance, see (2.19). We here as-
sume frequency-integrated bolometric quantities. The factor
(1 + z)−2 stems from the energy shift ν1/ν0 = 1 + z and
the time dilation dt1/dt0 = 1/(1+ z). In the Euclidean limit,
sinh(D/R) is replaced by D/R.

We may consider spectral densities instead of bolometric
quantities, Sb = ∫ ∞

0 S(ν)dν, Lb = ∫ ∞
0 L(ν)dν, so that

S(ν0) = L(ν1)(1 + z)

4πd2
L(z)

, (2.22)

which can be written as (Sandage 1988)

S(ν0) = L(ν0)K(z)

4πd2
L(z)

,

(2.23)

K(z) := L((1 + z)ν0)

L(ν0)
(1 + z).

In the case of a power-law density, L ∝ ν−s , we find K =
(1 + z)1−s . The X-ray photon index Γ = s + 1 has a typi-
cal range of 1.4 ≤ Γ ≤ 2.4. We thus find the spectral flux-
redshift relation

S = L

4π

(1 + z)1−s

d2
L(z)

, (2.24)

where S and L are spectral densities (per unit frequency). At
s = 1, this coincides with the bolometric relation (2.21).

Finally, we consider a galactic luminosity evolution
L(z) = L0h

−λ(z), where L is the intrinsic luminosity at
emission time τ1(z), and L0 is the present-day luminosity

at τ0. To relate this scaling to a moderate ratio, we start with
G0/c

5 ≈ 2.756×10−60 s/erg, and note that υG,0/c ≈ 1/478
and LG,0 ≈ 2 × 1010L
 ≈ 7.7 × 1043 erg/s, where υG,0 is
the velocity of the Galaxy in the microwave background and
LG,0 its luminosity (Amsler et al. 2008). We thus find

G0LG,0

υ5
G,0

≈ 1

190
. (2.25)

On substituting LG = LG,0h
−λ(z), υG = υG,0h

−ϑ(z), and
G = G0h(z) into GLG/υ5

G, we obtain λ = 5ϑ + 1 as a con-
dition on the exponents for this ratio to stay constant.

3 High-redshift asymptotics of comoving distance and
Hubble parameter

To put the redshift scaling discussed in Sect. 2 to test, we
need to make it more explicit by specifying the space ex-
pansion. We study expansion factors of type (2.6), defined
by parameters α,β , and η, which determine the asymptotic
stages τ → 0,∞. The expansion factor defined by the pa-
rameter set (2.11) is used in the fits in Figs. 1, 2 and 3, but
otherwise we do not specify these parameters in the high-
and low-z expansions in Sects. 3 and 4.

The emission time is parametrized by redshift, by solving
a(τ1) = 1/(1 + z) or

(
ητ1(z)/τ0

)β/α
sinh

(
ητ1(z)/τ0

) = ηβ/α sinhη

(1 + z)1/α
. (3.1)

In all high-z expansions (τ1 → 0), we use 1 + z or some
power thereof as expansion parameter. The two leading or-
ders of the asymptotic inversion of (3.1) read

τ1(z)

τ0
= x

η

(
1 − 1

6

α

γ
x2 + O

(
x4)

)
,

(3.2)

x(z) := ηβn sinhαn η

(1 + z)n
,

where γ = α+β > 0, and n = 1/γ . Upon specializing these
parameters as in (2.11), we find

τ1(z)

τ0
= 2.015

(1 + z)2

(
1 − 3.045

(1 + z)4
+ · · ·

)
. (3.3)

We turn to the high-z expansion of the metric distance D(z),
see (2.13),

D(z) := D(τ0, τ1) = cτ0 sinhα(η)

∫ 1

τ1/τ0

dt

tβ sinhα(ηt)
. (3.4)

The z dependence is via τ1(z) in the lower integration
boundary, by inversion of (3.1). From now on, we restrict the
parameter range to 0 < α + β < 1, so that the integral stays



Astrophys Space Sci (2010) 325: 259–275 263

Fig. 1 SN Ia Hubble diagram. Data points compiled from a listing of
ground-discovered SNe Ia, comprising ESSENCE and SNLS samples
as well as a sample of nearby SNe Ia (Wood-Vasey et al. 2007), and
from Riess et al. (2007) recording HST-discovered SNe Ia. The fit is
performed with the distance modulus μ = 5 log(hλ/2dL/Mpc) + 25,
see text after (4.10), where dL(z) denotes the luminosity distance
(2.21), h(z) the normalized Hubble parameter, see (2.18), and λ the
scaling exponent of the SN Ia luminosity, L ∝ h−λ(z). The solid curve

depicts the fit at λ = −1, and the dotted one the low-z expansion of
μ(z,λ = −1), see (4.10) and (4.15), applicable to redshifts up to about
z ≈ 2.2, where it falls off. The high-z asymptote is the upper edge
of the figure at μ(∞, λ = −1) ≈ 47.36. The dashed curve shows the
modulus μ(z,λ = 0) in the absence of luminosity evolution. The crite-
ria for the Gold and Silver data sets are defined in Riess et al. (2007);
the fit can be compared to Fig. 6 of this reference

finite for τ1 → 0, as suggested by planetary paleoclimates
(Tomaschitz 2005). Expanding D(z) in ascending powers
of τ1/τ0, we obtain

D(z) = cτ0 sinhα(η)

(
σh − ηβ−1

1 − γ
(ητ1/τ0)

1−γ

×
(

1 − α

6

1 − γ

3 − γ
(ητ1/τ0)

2 + · · ·
))

, (3.5)

where we have introduced the shortcut

σh :=
∫ 1

0

ds

sβ sinhα(ηs)
. (3.6)

The ellipsis stands for terms of O((τ1/τ0)
4), and γ = α +β ,

so that n = 1/γ > 1, see the text after (2.7). In (3.5), we
substitute the high-z expansion (3.2) of τ1/τ0,

D(z)

R
= D∞ − Dh(z), D∞ := H0τ0

R̂
σh sinhα η, (3.7)

Dh(z) := H0τ0

R̂

ηβ−1 sinhα η

1 − γ
x1−γ

×
(

1 − α

2γ

1 − γ

3 − γ
x2 + O

(
x4)

)
, (3.8)

with x(z) as defined in (3.2) and σh in (3.6). R̂ is the present-
day curvature radius of the hyperbolic 3-space in units of
c/H0, so that R = R̂c/H0 and cτ0/R = H0τ0/R̂. The metric
distance of the horizon is RD∞, and the correction RDh(z)

accounts for finite z. More explicitly,

Dh(z) = d∞
(1 + z)n−1

(
1 + d1

(1 + z)2n
+ O

(
(1 + z)−4n

))
,

d∞ := H0τ0

R̂

ηβn sinhαn η

(1 − γ )η
,

d1 := − α

2γ

1 − γ

3 − γ
η2βn sinh2αn η. (3.9)
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Fig. 2 AGN space density.
CDF + XMM + ROSAT data
points from Hasinger et al.
(2005), ChaMP + CDF +
ROSAT points from Silverman
et al. (2005). PTGS + SDSS
triangles stand for optically
selected QSOs, scaled to match
the X-ray data (Fan et al. 2001,
2004; Richards et al. 2006;
Schmidt et al. 1995); also see
Wall et al. (2005) and Wolf et al.
(2003). The fit is performed
with the comoving space density
(5.15) composed of two
competing power laws, the first
generating the initial steep
increase, the second a more
moderate decline terminating in
exponential decay (5.18). The
input and fitting parameters are
given after (5.16)

The high-z asymptotics of the comoving volume (2.20) and
the luminosity distance (2.21) is found by splitting the co-
moving distance D(z) as in (3.7) and substituting expansion
(3.9) into sinh(D∞ − Dh). (It is not efficient to further ex-
pand the hyperbolic sine in ascending powers of Dh because
of slow convergence.)

The fits in Figs. 1–3 are performed with the input para-
meters (2.11),

α = 1, β = −1

2
, η = 3

2
,

(3.10)

γ = α + β = 1

2
, n = 1

γ
= 2,

which give, see (2.8) and the text after (2.11),

H0τ0 ≈ 1.157, τ0 ≈ 11.315/h0 Gyr, (3.11)

as well as σh ≈ 1.246 for integral (3.6). We also note that
c/H0 ≈ 2.998 × 103/h0 Mpc, where h0 ≈ 0.680, see the
text after (2.4). The numerical constants in (3.7) and (3.9)
are

D∞ ≈ 3.070/R̂, d∞ ≈ 4.664/R̂,

(3.12)
d1 ≈ −1.827.

A horizon emerges as a hyperbolic sphere of radius D(z =
∞), that is, D(τ0,0) = RD∞ ≈ 9.203 × 103/h0 Mpc;
only photons emitted within this sphere can be received
at the present epoch. There is also an event horizon, de-
fined by the metric distance D(∞, τ0), see (3.4); photons
emitted at the present epoch outside this sphere cannot
reach us in the future. The radius of this horizon is calcu-
lated as D(∞, τ0) = RD∞(σh → σe), see (3.7), with σh re-
placed by σe := ∫ ∞

1 s−β sinh−α(ηs)ds. Hence, D(∞, τ0) =
(σe/σh)D(τ0,0). The expansion specified in (3.10) gives
σe ≈ 0.3834, so that D(∞, τ0) ≈ 0.308D(τ0,0).

The ascending τ/τ0 series of the Hubble parameter (2.7)
reads

Hλ(τ)

Hλ
0

= (ηγ )λ

(H0τ0)λ

1

yλ

(
1 + αλ

3γ
y2

+ αλ

9γ

(
α

γ

λ − 1

2
− 1

5

)
y4 + O

(
y6)

)
, (3.13)
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Fig. 3 Cumulative number count of soft X-ray point sources (0.5–
2 keV). ROSAT-PSPC and HRI data points from Hasinger et al. (1998),
HELLAS2XMM sources from Baldi et al. (2002), Lockman Hole
sources from Brunner et al. (2008), AXIS points from Carrera et al.
(2007), XMM-COSMOS wide-field data from Cappelluti et al. (2009),
and Chandra-COSMOS points from Elvis et al. (2009); also see Bauer
et al. (2004), Gilli et al. (2007), Lehmer et al. (2005), Moretti et al.
(2003), Puccetti et al. (2006), Rosati et al. (2002), and Ueda et al.
(2008). The count N(S) is rescaled by a factor S

3/2
14 , which refers to

the Euclidean high-S scaling (6.33), so that the latter corresponds to a
horizontal straight line in this double-logarithmic plot, with ordinate
at about 2.3 × 103. This Euclidean regime is not attained because of
the exponential cutoff (6.18). (There are indications that the deviation
from the Euclidean high-flux scaling is even more pronounced in the
hard X-ray bands; see the above references, the data sets are sparser
though.) The fit is based on the integral representation (6.28) of N(S),
with parameters listed at the end of Sect. 6

where y := ητ/τ0 and λ is an arbitrary real power. The
high-z asymptotics is found by substituting expansion (3.2)
of τ1(z) for τ . As in (2.18), we use the rescaled parameter
h(z) = H(τ1(z))/H0 to obtain

h(z) = h∞(1 + z)n
(

1 + h1

(1 + z)2n

+ O
(
(1 + z)−4n

))
, (3.14)

h∞ := γ η

H0τ0

1

(ηβ sinhα η)n
, h1 := α

2γ

(
ηβ sinhα η

)2n
.

(3.15)

The constants in (3.10) and (3.11) give

n = 2, h∞ ≈ 0.2144, h1 ≈ 9.136. (3.16)

The high-z expansion of the redshift derivative of the co-
moving volume, see (5.5) and (5.19), can readily be assem-
bled from (3.7), (3.9), and (3.14).

4 SN Ia Hubble diagram

4.1 Emission time and comoving distance in the
low-redshift regime

The low-z parametrization of the emission time reads

τ1(z)

τ0
− 1 = �1

H0τ0

= − z

H0τ0

(
1 − 1

2
(1 + ε)z

+
(

1

3
− δ

6
+ ε2

2

)
z2 + · · ·

)
, (4.1)
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where �1 = H0 · (τ1 − τ0). Here, we used the ascending
series (2.2) of the expansion factor to invert a(τ1(z)) =
1/(1+z), with ε = q0 +1, δ = p0 −1 (see (2.9) and (2.10)),
and the convention a(τ0) = 1. Specifying the expansion fac-
tor as in (3.10), we find

ε ≈ −2.786 × 10−3, δ ≈ 0.4245, (4.2)

and the low-z expansion of τ1(z),

τ1(z)/τ0 = 1 − 0.864z
(
1 − 0.499z + 0.263z2 + · · ·), (4.3)

normalized with the present epoch τ0, see (3.11). We also
note the ascending z series of an arbitrary real power λ of
the look-back interval −�1,

(−�1)
λ = zλ

(
1 − λ

2
(1 + ε)z + λ

(
5 + 3λ − 4δ

24

+ λ − 1

4
ε + λ + 3

8
ε2

)
z2 + · · ·

)
. (4.4)

The low-z expansion of the comoving distance D(z) is like-
wise based on the ascending series (2.2) of the expansion
factor,

1

a(τ)
= 1 − � +

(
1 + q0

2

)
�2

−
(

1 + q0 + p0

6

)
�3 + · · · , (4.5)

and subsequent term-by-term integration in (2.13). The as-
cending series in look-back time of an arbitrary power of
D(τ0, τ1) reads

Dλ(τ0, τ1) =
(

− c

H0
�1

)λ(
1 − λ

2
�1

+ λ

24
(1 + 3λ + 4ε)�2

1 + · · ·
)

. (4.6)

Here, we substitute expansion (4.4) of the look-back interval
to find

Dλ(z) =
(

c

H0
z

)λ(
1 − 1

2
ελz

− λ

(
δ

6
+ ε

3
− λ + 3

8
ε2

)
z2 + · · ·

)
, (4.7)

where λ is a real power, and the parameters ε and δ are re-
lated to expansion factor (2.6) as stated in (2.9) and (2.10).

4.2 Luminosity distance and distance modulus: SN Ia
luminosity evolution

The low-z expansion of the luminosity distance (2.21) is

dL(z) = c

H0
z(1 + z)

(
1 − 1

2
εz +

(
1

6R̂2
− δ

6

− ε

3
+ 1

2
ε2

)
z2 + O

(
z3)

)
, (4.8)

with coefficients ε and δ defined in (2.9), (2.10), and (4.2).
To derive this, we have used in (2.21) the ascending D(z)

series of the hyperbolic sine with the low-z expansion (4.7)
substituted:

sinhλ D(z)

R
= zλ

R̂λ

(
1 − λ

2
εz + a2z

2 + · · ·
)

,

(4.9)

a2(λ) := λ

(
1

6R̂2
− δ

6
− ε

3
+ λ + 3

8
ε2

)
,

where λ is an arbitrary real power. The constants (4.2) give

dL(z) = c

H0
z(1 + z)

(
1 + 1.39 × 10−3z

+
(

1

6R̂2
− 6.98 × 10−2

)
z2 + · · ·

)
. (4.10)

The dependence of the luminosity distance on the curvature
radius R̂ (in units of c/H0, see (2.18)) only shows in the
second-order correction.

We consider an intrinsic luminosity evolution Lb ∝
h−λ(z) in the bolometric flux-redshift relation (2.21), so
that S(z) ∝ 1/(hλd2

L). The distance modulus is then defined
as μ = 5 log(hλ/2(z)dL(z)[Mpc]) + 25 (Riess et al. 2004;
Sandage 1988). Figure 1 depicts the SN Ia Hubble dia-
gram covering redshifts up to z ≈ 1.75 (Riess et al. 2007;
Wood-Vasey et al. 2007). μ is compiled with the Hubble pa-
rameter (2.7), the luminosity distance in (2.21), and the inte-
gral representation (3.4) of the comoving distance; the red-
shift parametrization is obtained by inversion of (3.1). The
fit is performed with a linear luminosity evolution, λ = −1,
and the parameters (3.10), (3.11), and (4.2). The modulus
μ(z,λ = −1) increases monotonically with z, approach-
ing a finite limit value μ∞ ≈ 47.36. (For scaling exponents
λ < −1, the modulus attains a maximum at finite z, and it di-
verges for λ > −1.) If μ is calculated by substitution of the
ascending series (4.10) and (4.15), there is virtually no dif-
ference with the exact modulus for redshifts up to z ≈ 2.2,
as long as we stay in the Euclidean regime, R̂ ≥ 10. In this
redshift range, the fit is not sensitive to curvature radii above
R̂ = 10, that is, indistinguishable from the Euclidean limit
R̂ → ∞, and it only provides a test of the low-z evolution.
The fit in Fig. 1 is done with R̂ = 10. The luminosity scales
with the synthesized 56Ni mass, which scatters from SN to
SN by up to a factor of ten and is age dependent (Stritzinger
et al. 2006a, 2006b). Therefore, it is prudent to adopt an ap-
proach independent of progenitor models, the linear scaling
L ∝ h(z) being inferred from an empirical fit. Further ev-
idence for a luminosity dependence of Type Ia supernovae
on look-back time is given in Gallagher et al. (2008), where
a metallicity correction of the SN Ia Hubble diagram is sug-
gested.
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4.3 Low-z expansion of comoving volume and Hubble
parameter

The leading orders of the ascending D/R-series of the co-
moving hyperbolic volume V (D) in (2.20) read

V (D) = 4π

3
D3

(
1 + 1

5

(
D

R

)2

+ O
(
D4)

)
. (4.11)

We substitute the series expansion of D(z) in (4.7) to obtain

V (z) = 4π

3

(
c

H0
z

)3(
1 − 3

2
εz

+
(

1

5R̂2
− δ

2
− ε + 9

4
ε2

)
z2 + O

(
z3)

)
. (4.12)

The constants ε and δ in (4.2) give

V (z) = 4π

3

(
c

H0

)3

z3
(

1 + 4.18 × 10−3z

+
(

1

5R̂2
− 0.209

)
z2 + · · ·

)
. (4.13)

To obtain the volume at emission time, we have to multiply
by a3(τ1) = (1 + z)−3, see the text after (2.20).

We turn to the low-z expansion of the Hubble parameter.
In the limit τ → τ0, we expand H = ȧ(τ )/a(τ ) in � = H0 ·
(τ − τ0), by making use of (2.2) and (4.5):

Hλ(τ)

Hλ
0

= 1 − ελ�

+ λ

2

(
δ + 3ε + (λ − 1)ε2)�2 + · · · , (4.14)

where λ is an arbitrary real exponent. The constants ε and
δ are defined in (2.9) and (2.10). Replacing � by the low-z
expansion of the look-back interval �1 in (4.4), we arrive at

hλ(z) = 1 + λεz + λ

(
δ

2
+ ε + λ − 2

2
ε2

)
z2 + · · · , (4.15)

where h(z) = H(τ1(z))/H0 is the rescaled Hubble para-
meter coinciding with the normalized gravitational constant
G(τ1(z))/G0, see (2.4). The constants (4.2) give

h(z) = 1 − 2.79 × 10−3z + 0.209z2 + · · · , (4.16)

as well as Ḣ0/H0 ≈ 1.938 × 10−4 Gyr−1 and Ḧ0/H0 ≈
2.014 × 10−3 Gyr−2, see (4.14), to be compared to the
bounds (2±7)×10−4 Gyr−1 and (4±5)×103 Gyr−2 from
lunar laser ranging (Müller and Biskupek 2007).

5 Evolution of the AGN space density based on
constant dimensionless ratios and a varying
gravitational constant

5.1 Hubble parameter as universal scaling variable for
redshift evolution: count-redshift relation

A moderate dimensionless ratio,

Ωm := 8π

3

G0ρm(τ0)

H 2
0

≈ 0.3 ± 0.1, (5.1)

can be composed with the mass density ρm of the universe
(Kowalski et al. 2008; Komatsu et al. 2009). This ratio is
kept constant in the cosmic evolution, G(τ)ρm(τ ) ∝ H 2(τ ).
Since the rest mass does not vary in cosmic time, the co-
moving number density scales as ρ(τ) ∝ H(τ), see the
text after (2.4). This is a crucial departure from the conser-
vation law ρ(τ) ∝ 1, implying a conserved number count
dN = ρ dV , where dV is the differential comoving vol-
ume (2.20).

We consider a luminosity-dependent number density, us-
ing the ansatz

ρ(z,L) := ρ0h
1+δ(z)F

(
Lhλ(z)

)
, (5.2)

where the factor ρ0h
1+δ(z) accounts for density evolution,

by source creation and destruction for instance. The scal-
ing variables in (5.2) are powers of the Hubble parameter
h(z) = H(τ1(z))/H0, see (2.18). A constant Ωm suggests
δ = 0 in (5.2), but we leave the choice of the exponents
open at this stage. The factor F(Lhλ(z)) accounts for the
luminosity evolution, where the scaling function

F(L0) :=
∫ ∞

L0/Lc

yμ−1(1 + y)νe−κy dy

= U(μ,ν, κ;L0/Lc) (5.3)

is composed of a power law yμ−1 at faint luminosities, and a
power law with exponential cutoff yμ+ν−1e−κy at the bright
end. F(L0) is parametrized by the luminosity scale Lc and
exponents μ,ν, and κ > 0. Some limit cases of the incom-
plete confluent function U defined by (5.3) are outlined after
(5.21). (Exponent δ in (5.2) is not to be confused with coef-
ficient (2.10) in the ascending series of the expansion factor,
and exponent μ in (5.3) is unrelated to the distance modu-
lus.)

The differential number count is assembled as

dN(z,L) = ρ(z,L)V ′(z)dz, (5.4)

where dV (z) = area(D)dD(z) is the comoving volume ele-
ment, see (2.18)–(2.20), so that

V ′(z) = c3

H 3
0

4πR̂2

h(z)
sinh2 D(z)

R
. (5.5)
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We find the differential and cumulative counting functions
as

N ′(z,L) = ρ(z,L)V ′(z),
(5.6)

N(z,L) =
∫ z

0
N ′(z,L)dz,

with ρ in (5.2) and V ′ in (5.5).

5.2 Luminosity function and comoving AGN/QSO space
density

The luminosity function Φ(z,L) is defined as source count
per unit luminosity and unit volume (Croom et al. 2004;
Miyaji et al. 2001; Silverman et al. 2008; Ueda et al. 2003),

N(z,L) =
∫ z

0

∫ ∞

L

Φ(z,L)dLdV (z), (5.7)

so that the comoving space density ρ(z,L) can be identified
with the cumulative luminosity function

ρ(z,L) = dN

dV
=

∫ ∞

L

Φ(z,L)dL. (5.8)

We find, by comparing to (5.2) and (5.3),

Φ(z,L) = −dρ(z,L)

dL
= ρ0h

1+δ+λ(z)f
(
Lhλ(z)

)
, (5.9)

f (L0) := −F ′(L0) = 1

Lc
(L0/Lc)

μ−1(1 + L0/Lc)
ν

× exp(−κL0/Lc). (5.10)

The space density and luminosity function are thus related
to the scaling function (5.3) by

ρ(z,L) = N ′(z,L)

V ′(z)
= ρ0h

1+δU
(
μ,ν, κ;Lhλ/Lc

)
, (5.11)

Φ(z,L) = ρ0

Lc
h1+δ+λ

(
Lhλ/Lc

)μ−1(1 + Lhλ/Lc
)ν

× exp
(−κLhλ/Lc

)
. (5.12)

The redshift dependence is exclusively via the Hubble pa-
rameter h(z). The space density differs from the differ-
ential count by the volume factor (5.5), dN(z,L)/dz =
ρ(z,L)V ′(z). We may introduce log(L/Lc) or the absolute
magnitude, M − M0 = −(5/2) log(L/Lc), as integration
variable in (5.8),

ρ(z,L) =
∫ ∞

log(L/Lc)

Φ̂
(
z,Lc · 10x

)
dx, (5.13)

with the rescaled luminosity function

Φ̂(z,L) := − dρ(z,L)

d log(L/Lc)
= LΦ(z,L)

log e
. (5.14)

Returning to (5.8), we find the comoving space density in a
finite luminosity interval (L,Lmax) as

ρ(z;L,Lmax)

=
∫ Lmax

L

Φ(z,L)dL = ρ(z,L) − ρ(z,Lmax)

= ρ0h
1+δ

∫ Lmaxh
λ/Lc

Lhλ/Lc

yμ−1(1 + y)ν exp(−κy)dy

= ρ0h
1+δ+λμ Lμ

L
μ
c

∫ Lmax/L

1
xμ−1

(
1 + Lhλ

Lc
x

)ν

× exp

(
−κ

Lhλ

Lc
x

)
dx. (5.15)

Density ρ(z;L) in (5.8) and (5.11) is recovered in the
limit Lmax → ∞. We briefly discuss the qualitative red-
shift scaling of ρ(z;L,Lmax). If L/Lc � 1 and κ � 1
as well as λ > 0, we have roughly ρ ∝ h1+δ+λμ, up to a
redshift zc1 defined by hλ(zc1) ≈ Lc/L. Exponential de-
cay, ρ ∝ exp(−κLhλ/Lc), sets in at about zc2 defined
by hλ(zc2) ≈ Lc/(Lκ). In between, there is a power-law
crossover ρ ∝ h1+δ+λ(μ+ν). The typical case is μ > 0 and
μ + ν < 0, so that the first power law with large positive ex-
ponent 1 + δ +λμ corresponds to a rapid increase up to zc1.
This is followed by a power law ∝ h1+δ+λ(μ+ν) with neg-
ative exponent implying power-law decay up to zc2, where
exponential decay sets in.

The fit of the AGN space density in Fig. 2 is per-
formed with ρ(z;L,Lmax) in (5.15). It is convenient to
use a dimensionless density scale ρ̂(L,Lmax) defined by
ρ(0;L,Lmax) = ρ̂H 3

0 /c3, to be substituted for ρ0 in (5.15),

ρ0
[
Mpc−3] ≈ 1.1680 × 10−11ρ̂

∫ Lmax/Lc
L/Lc

yμ−1(1 + y)νe−κy dy
. (5.16)

Here, H 3
0 /c3 ≈ 1.1680 × 10−11 Mpc−3, see the text af-

ter (2.4). We adopt the X-ray luminosity scale used in
Hasinger et al. (2005), writing L44 for L in units of
1044 erg/s, and analogously Lc,44. The expansion factor is
specified in (3.10) and (3.11). We consider the luminos-
ity interval L44 = 1,Lmax,44 = 10, and use the exponents
μ = 2 and ν = −5/2, as well as δ = 0 and λ = 6 as in-
put parameters. The fitting parameters are ρ̂(L,Lmax) ≈
9.0 × 103, Lc,44(L,Lmax) ≈ 40, and κ ≈ 1.6 × 10−5, so
that ρ0 ≈ 5.0 × 10−6 Mpc−3, see (5.16). The rapid rise of
the AGN space density in Fig. 2 is due to the large exponent
1 + δ + λμ; see the discussion following (5.15).

When studying source counts in Sect. 6, we will need
the redshift asymptotics of the luminosity function (5.12)
and the space density (5.11). Their high-z limit, hλ(z) → ∞,
reads
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Φ(z → ∞,L) ∼ ρ0

Lc
h1+δ+λ

(
Lhλ/Lc

)μ+ν−1

× exp
(−κLhλ/Lc

)
, (5.17)

ρ(z → ∞,L) ∼ Lc

κhλ
Φ(z,L). (5.18)

This is also valid at fixed z for L → ∞. We will also need
the asymptotic redshift derivative of the comoving volume,
see (3.7) and (5.5),

V ′(z → ∞) ∼ 4π
c3

H 3
0

R̂2 sinh2 D∞
h(z)

. (5.19)

In the low-z regime, h(z) → 1, we find that, see (4.12), (5.2),
and (5.3),

ρ(z → 0,L) ∼ ρ0F(L),
(5.20)

V ′(z → 0) ∼ 4π
c3

H 3
0

z2.

The high- and low-z asymptotics of the differential counting
function, N ′(z,L) = ρ(z,L)V ′(z), follows accordingly.

We list some properties and special cases of the scaling
function (5.3),

U(μ,ν, κ;y) :=
∫ ∞

y

yμ−1(1 + y)νe−κy dy. (5.21)

First, U(μ,ν, κ;0) = Γ (μ)U(μ,1 + μ + ν, κ), where
U(a,b, z) is the confluent hypergeometric function (Mag-
nus et al. 1966), and μ > 0 is required for convergence at
y = 0. (We use the same symbol U for the incomplete con-
fluent function (5.21), with one more argument.) Otherwise,
if μ < 0, we find U(μ,ν, κ;y → 0) ∼ −yμ/μ. The y → ∞
limit is U(μ,ν, κ;y) ∼ yμ+ν−1e−κy/κ , and the y deriva-
tive of (5.21) reads U ′ = −yμ−1(1 + y)νe−κy . Apparently,
U(μ,ν, κ;y) is elementary for positive integer exponents μ

and ν. At ν = 0, we recover the cumulative Schechter lu-
minosity function U(μ,0, κ;y) = κ−μΓ (μ,κy), see, e.g.,
Babbedge et al. (2006). A positive integer exponent ν thus
amounts to a linear combination of incomplete gamma func-
tions. A negative ν gives luminosity functions similar to
reciprocal linear combinations of two power laws as used in
Croom et al. (2004), Miyaji et al. (2001), and Ueda et al.
(2003), apart from the exponential cutoff. At μ = 1, we find
U(1, ν, κ;y) = κ−ν−1eκΓ (1 + ν, (1 + y)κ), where the in-
complete gamma function can be reduced to the exponential
integral in the case of integer ν, and to the error function for
half-integer ν; a positive integer exponent μ can be dealt
with by multiple κ differentiation, according to (5.21).

6 Flux-limited source counts and luminosity evolution

6.1 Flux parametrization of the counting function

To derive the flux-limited count, that is, the number N(S)

of sources exceeding a lower flux threshold S, we start with

the counting function N ′(z,L) in (5.6). The flux parame-
trization is done by replacing the intrinsic luminosity L by
the apparent flux, via the flux-redshift relation (2.24),

L(z,S) = 4πR2σD(z)S, (6.1)

σD(z) := (1 + z)s+1 sinh2 D(z)

R
, (6.2)

where D(z) is the comoving distance defined in (2.18) or
(3.4) and s is the spectral index. The flux-limited count cu-
mulative in redshift reads, see (5.6) and (5.7),

N(S) =
∫ ∞

ε

N ′(z,L(z,S)
)

dz

=
∫ ∞

S

∫ ∞

ε

n(z, S)d zdS, (6.3)

where we have introduced a lower cutoff ε in the redshift
integration to allow the interchange of integrations. (This
cutoff ε is not to be confused with coefficient (2.9) in the
ascending series of the expansion factor.) Density n(z,S) is
related to the counting function by

N ′(z,L(z,S)
) =

∫ ∞

S

n(z, S)dS

= ρ
(
z,L(z,S)

)
V ′(z), (6.4)

where ρ is the flux-parametrized space density (5.8),

ρ
(
z,L(z,S)

) = 4πR2σD(z)

∫ ∞

S

Φ
(
z,L(z,S)

)
dS. (6.5)

This allows us to identify

n(z,S) = 4πR2σD(z)Φ
(
z,L(z,S)

)
V ′(z), (6.6)

where the flux-parametrized luminosity function (5.9) reads

Φ
(
z,L(z,S)

) = ρ0h
1+δ+λ(z)f

(
L(z,S)hλ(z)

)
. (6.7)

The scaling function f (Lhλ) is assembled from (5.10) and
(6.1),

f (Lhλ) = 1

4πR2Sc

(
g(z)

S

Sc

)μ−1(
1 + g(z)

S

Sc

)ν

× exp

(
−κg(z)

S

Sc

)
, (6.8)

where we have introduced the shortcuts

g(z) := σD(z)hλ(z),

(6.9)

Sc := Lc

4πR2
= LcH

2
0

4πc2

1

R̂2
.

To obtain the asymptotic limits of Φ(z,L(z,S)) and
ρ(z,L(z,S)), valid for g(z) → ∞ as well as S → ∞, we
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only need to substitute identity hλL/Lc = gS/Sc into (5.17)
and (5.18), and set Lc = 4πR2Sc.

We may write density (6.5) as, see (5.2),

ρ
(
z,L(z,S)

) = ρ0h
1+δ(z)F

(
L(z,S)hλ(z)

)
, (6.10)

with the scaling function, see (5.3) and (5.21),

F
(
Lhλ

) =
∫ ∞

gS/Sc

yμ−1(1 + y)νe−κy dy

= U(μ,ν, κ;gS/Sc). (6.11)

If μ > 0, this admits a finite limit at S = 0, see the text after
(5.21),

F(0) = Γ (μ)U(μ,1 + μ + ν, κ). (6.12)

In the absence of a lower flux threshold, we thus find the
redshift scaling ρ(z,0) ∝ h1+δ(z) at S = 0. If μ < 0, the
scaling F(Lhλ) ∼ −(g(z)S/Sc)

μ/μ holds for g(z)S → 0.
The total count, N∞ := N(S = 0), can be assembled from
(6.3), (6.4), (6.10), and (6.12),

N∞ =
∫ ∞

ε

N ′(z,0)dz, N ′(z,0) = ρ0F(0)h1+δ(z)V ′(z).

(6.13)

To obtain the high-z asymptotics of the integrand N ′(z,0),
we substitute h(z) ∼ h∞(1 + z)n, see (3.14) (where n >

1, see the text after (3.6)), as well as the asymptotic
V ′(z → ∞) in (5.19),

N ′(z → ∞,0) ∼ ρ̂0nz(1 + z)ξ−1, ξ := nδ + 1,

nz := 4πR̂2F(0)hδ∞ sinh2 D∞, ρ̂0 := ρ0c
3/H 3

0 . (6.14)

The amplitude h∞ is defined in (3.15). Thus, ξ < 0 is the
condition for N∞ to be finite, in addition to μ > 0, see
the text after (6.11). The low-z scaling is N ′(z → 0,0) ∼
4πρ̂0F(0)z2, obtained via h(z) ∼ 1, see (4.15), and the as-
ymptotic V ′(z → 0) in (5.20).

When comparing to observational plots, it is sometimes
convenient to replace the flux variable S by the apparent
magnitude m − m0 = −(5/2) log(S/Sc). That is, the fore-
going relations can be parametrized in apparent and ab-
solute magnitudes (as defined before (5.13)) instead of ap-
parent flux and intrinsic luminosity. In this case, we use the
logarithmic version of the flux–redshift relation (6.1), the
magnitude–redshift relation

m − m0 = M − M0 + 5

2
logσD(z), (6.15)

with σD defined in (6.2).

6.2 Scaling exponents of differential and cumulative counts

To derive the high- and low-S asymptotics of the cumulative
count N(S) in (6.3), we start with the derivative

n(S) := −N ′(S) =
∫ ∞

ε

n(z, S)dz,

(6.16)

N(S) =
∫ ∞

S

n(S)dS,

where the integrand n(z,S) is assembled from (6.6)–(6.9),

n(z,S) = ρ0

Sc
h1+δ(z)gμ(z)V ′(z)(S/Sc)

μ−1

× (1 + gS/Sc)
ν exp(−κgS/Sc). (6.17)

In the following, we derive the leading-order asymptotics of
n(S) in (6.16); the scaling exponents of the cumulative count
are found by integration of the asymptotic n(S).

6.2.1 High-flux asymptotics

The high-S scaling of the differential count n(S) in (6.16) is
determined by small z, provided that g(z) is monotonically
increasing, see (6.17). It can also happen that g(z) reaches
a maximum and decreases to zero for z → ∞; this case is
discussed after (6.20). By expanding the integrand n(z,S) at
z = ε, we find

n(S → ∞) ∼ ρ0

κSc
h1+δ(ε)gμ+ν(ε)

V ′(ε)
g′(ε)

× (S/Sc)
μ+ν−2 exp

(
−κg(ε)

S

Sc

)
, (6.18)

N(S → ∞) ∼ Sc

κg(ε)
n(S).

The derivative g′(ε) of the scaling function (6.9) is calcu-
lated by making use of (2.17) and (2.18). This exponential
decay is in strong contrast to the power-law decay at ε = 0,
which is determined by the low-z asymptotics of density
n(z,S). To recover this Euclidean limit, we return to (6.17)
and substitute h(z) ∼ 1, see (4.15), g(z) ∼ σD(z) ∼ z2/R̂2,
see (4.9), (6.2), and (6.9), as well as V ′(z → 0), see (5.20),

n(z → 0, S) ∼ 4πρ̂0
z2μ+2

R̂2μ

Sμ−1

S
μ
c

(
1 + z2

R̂2

S

Sc

)ν

× exp

(
−κ

z2

R̂2

S

Sc

)
. (6.19)

Here, we have defined ρ0 =: ρ̂0H
3
0 /c3, measuring density

(5.2) in units of H 3
0 /c3, analogously to the curvature radius

R = R̂c/H0, see (2.18). Apparently, μ > −3/2 is required
for the convergence of integral (6.16) at ε = 0. We substitute
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(6.19) into (6.16), set ε = 0, and carry out the z integration
according to (5.21) (with y = 0), to find the Euclidean high-
S scaling

n(S → ∞) ∼ ρ̂0n∞
S

3/2
c

S5/2
, N(S → ∞) ∼ 2

3
ρ̂0n∞

S
3/2
c

S3/2
,

n∞ := 2πR̂3Γ

(
μ + 3

2

)
U

(
μ + 3

2
,μ + ν + 5

2
, κ

)
.

(6.20)

As mentioned, the scale factor g(z) in the exponent of
n(z,S) in (6.17) can be decreasing for high z. The high-
z limit of g(z) in (6.9) is readily assembled from σD(z) ∼
zs+1 sinh2 D∞, see (3.7) and (6.2), as well as h(z) ∼ h∞zn,
see (3.14), and V ′(z → ∞) in (5.19),

g(z → ∞) ∼ hλ∞zχ sinh2 D∞, χ := nλ + s + 1. (6.21)

This decreases to zero if exponent χ is negative. We substi-
tute these limits into (6.17), to obtain the high-z counterpart
to (6.19),

n(z → ∞, S) ∼ ÂŜμ−1zϕ−1(1 + Ŝzχ
)ν exp

(−κŜzχ
)
,

ϕ := ξ + χμ, Â := 4πρ̂0
R̂2

Sc
hδ+λ∞ sinh4 D∞,

Ŝ := S

Sc
hλ∞ sinh2 D∞. (6.22)

Here, ξ = nδ + 1, as in (6.14). If χ < 0, then ϕ < 0 is neces-
sary for integral (6.16) to converge, in addition to condition
μ > −3/2 required at low z to define the differential count
n(S) at ε = 0. On substituting (6.22) into (6.16), we find the
high-S scaling

n(S) ∼ Â

|χ |Γ
(

ϕ

χ

)
U

(
ϕ

χ
,
ϕ

χ
+ ν + 1, κ

)
1

Ŝσ+1
,

σ := ξ

χ
= nδ + 1

nλ + s + 1
, ϕ = χ(σ + μ). (6.23)

Here, χ < 0 as well as ϕ < 0 is implied. The cutoff ε in
(6.16) does not enter in leading order. The exponents δ and
λ determine the redshift scaling of the number density in
(5.2). The exponent n = 1/γ is defined by the space expan-
sion, see the text after (2.7), and s is the spectral index in the
flux-redshift relation, see (2.24) and (6.2). We assume a pos-
itive exponent σ in (6.23); otherwise, the cumulative count
N(S) is not defined for χ < 0. The asymptotic N(S → ∞)

is obtained by substituting (6.23) into (6.16),

n(S) ∼ ρ̂0n0
Sσ

c

Sσ+1
, N(S) ∼ ρ̂0n0

σ

Sσ
c

Sσ
,

n0 := 4πR̂2hδ−λσ∞
sinh2(1−σ) D∞

|χ | Γ (σ + μ) (6.24)

× U(σ + μ,σ + μ + ν + 1, κ).

Accordingly, if 0 < σ < 3/2 (and χ < 0), we find the scal-
ing N(S → ∞) ∝ S−σ , which overpowers the Euclidean
limit (6.20). If σ = 3/2, the S → ∞ asymptotics of N(S) is
obtained by adding the low- and high-z contributions (6.20)
and (6.24); the latter only exists for χ < 0. If σ > 3/2, the
Euclidean high-S scaling (6.20) remains valid even for neg-
ative χ , as it dominates the high-z contribution (6.24). A fi-
nite cutoff ε turns the Euclidean scaling (6.20) into exponen-
tial decay (6.18), so that the power law (6.24) (which exists
only if χ < 0) also applies for σ > 3/2. If χ is positive,
the S → ∞ asymptotics is either exponential or Euclidean,
according to (6.18) and (6.20).

6.2.2 Power-law scaling in the low-flux regime

To derive the low-S scaling of the differential count n(S),
we split integral (6.16) into

n(S) = I0 + I∞,

I0 :=
∫ Λ

ε

n(z, S)dz, I∞ :=
∫ ∞

Λ

n(z,S)dz, (6.25)

where Λ is a large cutoff parameter, so that the high-z limit
(6.22) of n(z,S) can be substituted into I∞. If the expo-
nents χ and ϕ (defined in (6.21) and (6.22)) are positive,
we can carry out the integration I∞ as in (6.23), to find
I∞ ∼ n0S

σ
c /Sσ+1, with exponent σ defined in (6.23) and

amplitude n0 in (6.24). (In leading order, I∞ does not de-
pend on the cutoff parameter Λ.) Regarding the exponents,
we note ϕ = χ(σ + μ), see (6.23), which implies σ > −μ,
as χ and ϕ have the same sign. As for integral I0 in (6.25),
we substitute density n(z,S) as stated in (6.17), and per-
form the limit S → 0 in the ν dependent factor and the expo-
nential, so that I0 ∝ Sμ−1, with a Λ dependent proportion-
ality factor (which diverges for Λ → ∞). Since σ > −μ,
the leading-order asymptotics of n(S) is determined by I∞.
Accordingly, if χ > 0 and ϕ > 0, the low-S scaling of the
differential and cumulative counts is given by (6.24), now
applicable for S → 0.

The scaling of N(S) stated in (6.24) is valid only if
σ > 0. A negative exponent σ is admissible for χ > 0, and
implies a negative ξ = χσ , see (6.23). A negative σ also im-
plies μ > 0, since σ > −μ. Therefore, if σ < 0, we obtain
a finite limit, N(S → 0) = N∞, as μ > 0 and ξ < 0 are the
conditions for N(S → 0) to be finite, see (6.14). The nu-
merical calculation of the total count N∞ is indicated after
(6.32).

Next we study the low-S scaling of n(S) for negative
exponents χ and ϕ. On substituting the high-z expansion
(6.22) into I∞, we find I∞ ∝ Sμ−1, with an amplitude van-
ishing for Λ → ∞. As for integral I0 in (6.25), we perform
the same procedure as above, and find I0 ∝ Sμ−1, with a Λ

dependent proportionality factor converging to a finite limit
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for Λ → ∞. The low-S asymptotics is thus determined by
I0, which gives, for χ < 0 and ϕ < 0,

n(S → 0) ∼ ρ̂0n1
Sμ−1

S
μ
c

, N(S → 0) ∼ ρ̂0n1

|μ|
Sμ

S
μ
c

,

(6.26)

n1 := H 3
0

c3

∫ ∞

ε

h1+δ(z)gμ(z)V ′(z)dz,

with V ′(z) in (5.5). The amplitude n1 is calculated by us-
ing the emission time as integration variable, see the text
after (6.32). The indicated scaling of N(S) only holds for
negative μ, as the cumulative count admits a finite limit for
μ > 0,N(S → 0) = N∞. In fact, as mentioned after (6.23),
we can assume a positive σ if χ < 0; otherwise, N(S) is
not defined, see (6.16) and n(S) in (6.24). A positive σ im-
plies ξ < 0, since χ < 0, see (6.23). If in addition μ > 0, this
results in a finite N∞, according to (6.13) and (6.14). In con-
trast, a negative μ implies the scaling (6.26) for N(S → 0).
Finally, if ε = 0,N(S) cannot decrease faster than S−3/2,
since condition μ > −3/2 is necessary for the convergence
of the integrals in (6.16) and (6.26) defining the differential
count n(S), see the text after (6.19).

It remains to settle the low-S asymptotics of n(S) for the
case χ > 0 and ϕ < 0, so that σ < −μ, see the text after
(6.25). (The combination χ < 0 and ϕ > 0 need not be con-
sidered, since n(S) is ill defined in this case, see the text after
(6.22).) Performing the same procedure as above, we find
that I∞ ∝ Sμ−1 with an amplitude vanishing for Λ → ∞,
as well as I0 ∝ Sμ−1 with a proportionality factor that stays
finite for Λ → ∞ since ϕ < 0 in (6.22). Thus we recover
n(S → 0) in (6.26). As for the cumulative count N(S → 0),
we find, for μ > 0, a finite limit N∞, see (6.13), since σ is
negative, σ < −μ, and so is ξ = χσ . In the case of a nega-
tive exponent μ,N(S) scales as stated in (6.26).

6.3 Crossover from high to low flux limits: number count
of soft X-ray point sources

In the intermediate regime, at moderate flux limit S, we
have to numerically integrate the source count N(S) in (6.3),
whose integrand is assembled from (6.4), (6.10), and (6.11),

N ′(z,L(z,S)
)

= ρ0h
1+δ(z)U

(
μ,ν, κ;g(z)S/Sc

)
V ′(z), (6.27)

with V ′(z) in (5.5). We introduce the emission time as inte-
gration variable instead of z, by virtue of 1 + z = 1/a(τ1),
see (2.14). The differential required in the reparametrization
is dz = −H(τ1)dτ1/a(τ1), see (2.15). It is convenient to use
a rescaled dimensionless time variable in units of the present
epoch, 0 ≤ y ≤ 1, τ1 = τ0y, to write the cumulative count

(6.3) as, see (5.5) and (6.27),

N(S) = 4πρ̂0R̂
2H0τ0

∫ τ1(ε)/τ0

0

dy

a(y)
h1+δ(y)

× U
(
μ,ν, κ;g(y)S/Sc

)
sinh2 D(y)

R
. (6.28)

Here, ρ̂0 and R̂ denote the dimensionless density scale and
the curvature radius in units of H 3

0 /c3 and c/H0, respec-
tively, see the text after (6.19). The upper integration bound-
ary τ1(ε)/τ0 is obtained by numerical inversion of (3.1)
at z = ε. By employing emission time as integration vari-
able, we need to invert this equation only once, at the inte-
gration boundary.

We summarize the quantities occurring in the integrand
of N(S) in (6.28). U is the incomplete confluent function
(5.21). The expansion factor a(y) and the normalized Hub-
ble parameter h(y) = H(y)/H0 read, see (2.6) and (2.7),

a(y) = yβ sinhα(ηy)

sinhα η
,

(6.29)

h(y) = 1

H0τ0

(
αη coth(ηy) + β

y

)
.

The comoving distance in the argument of the hyperbolic
sine is defined in (2.13),

D(y)

R
= H0τ0

R̂

∫ 1

y

dỹ

a(ỹ)
. (6.30)

As for the constant H0τ0, we refer to (2.8) and (3.11). Fi-
nally, the scale factor g(y) is assembled as, see (6.2) and
(6.9),

g(y) = hλ(y)

as+1(y)
sinh2 D(y)

R
. (6.31)

By making use of U ′ as stated after (5.21), we find the deriv-
ative n(S) = −N ′(S) of the cumulative count (6.28),

n(S) = 4πρ̂0R̂
2H0τ0

Sμ−1

S
μ
c

×
∫ τ1(ε)/τ0

0

dy

a(y)
h1+δ(y)gμ(y)

(
1 + g(y)

S

Sc

)ν

× e−κg(y)S/Sc sinh2 D(y)

R
. (6.32)

The amplitude n1 in (6.26) is recovered by dropping all fac-
tors depending on the S/Sc ratio as well as ρ̂0. The constant
N∞ in (6.13) is calculated by setting S = 0 in (6.28), which
amounts to replacing the incomplete Kummer function U by
F(0), see (6.12). The exponent ξ in (6.14) has to be negative
for this limit N∞ to exist.

Since Sc ∝ 1/R2, see (6.9), it is convenient to re-
place Sc with the curvature-independent flux scale S0 :=
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LcH
2
0 /(4πc2), by substituting Sc = S0/R̂

2 into the above
formulas. That is, we use S0 instead of Sc as fitting parame-
ter. The high-S scaling valid for positive exponents χ and ϕ

(defined in (6.21) and (6.22)) reads

n(S → ∞) ∼ ρ̂0n∞
R̂3

S
3/2
0

S5/2
,

(6.33)

N(S → ∞) ∼ 2

3

ρ̂0n∞
R̂3

S
3/2
0

S3/2
,

with amplitude n∞ defined in (6.20). The low-S scaling
(again for positive χ and ϕ, see the text after (6.25)) is

n(S → 0) ∼ ρ̂0n0

R̂2σ

Sσ
0

Sσ+1
,

(6.34)

N(S → 0) ∼ ρ̂0n0

σR̂2σ

Sσ
0

Sσ
,

with amplitude n0 in (6.24). The amplitudes n∞,0 depend
on the curvature radius R̂. The number count pertaining to a
flat 3-space is recovered by performing the limit R̂ → ∞. In
this limit, sinh(D/R) is replaced by D/R in (6.28), (6.31),
and (6.32). As for the amplitude n0 in (6.24), sinhD∞ is
replaced by D∞, see (3.7); since Sc = S0/R̂

2, R̂ drops out.
The break flux Sb in the crossover region is defined by

equating the asymptotic power laws n(Sb) in (6.33) and
(6.34), so that S0 = SbR̂

2(n0/n∞)2/(3−2σ). The amplitudes
n∞,0 are stated in (6.20) and (6.24). The break flux Sb,N

of the cumulative count is obtained by equating the asymp-
totic N(Sb,N) in (6.33) and (6.34), Sb = Sb,N(2σ/3)2/(2σ−3).
In this way, we have parametrized the flux scale S0 by the
break flux of the differential or cumulative count. The as-
ymptotic counts N(S → 0,∞) appear as straight lines in
double-logarithmic plots, intersecting at Sb,N.

In Fig. 3, we fit cumulative counts of soft X-ray point
sources. To this end, we introduce dimensionless quantities,
writing S14 for S in units of 10−14 erg cm−2 s−1. We write
the cumulative count in (6.33) as N(S) ∼ 2A∞S

−3/2
14 /3, so

that ρ̂0 = A∞S
−3/2
0,14 R̂3/n∞, which is independent of the

curvature radius, since n∞ ∝ R̂3. The dimensionless am-
plitude A∞ is customarily given per deg2. S14 stands for
S/(10−14 erg cm−2 s−1), and analogously S0,14.

The fit in Fig. 3 is based on the integral representation
(6.28) of the cumulative count. The expansion factor (6.29)
is specified as in (3.10) and (3.11); in particular, the high-z
asymptotics of the Hubble parameter is defined by the scal-
ing exponent n = 2, see (3.16). As for the spectral index
in (6.31), we set s = 1 in the 0.5–2 keV range considered
(Cappelluti et al. 2007, 2009). The luminosity evolution is
specified by the scaling exponent λ = 6. The exponent of
the density evolution is δ = 0, see the text after (5.16). As
for the derived asymptotic scaling exponents, we find ξ = 1,
see (6.14), χ = 14, see (6.21), and σ = 1/14, see (6.23);

the exponent ϕ is positive provided that μ > 0, see (6.22). A
positive μ is suggested by the rapid initial rise in the redshift
evolution of the AGN space density, see Fig. 2 and the text
after (5.15). The exponents determining the luminosity scal-
ing function (5.3) are taken from the fit of the AGN space
density in Fig. 2, μ = 2, ν = −5/2, and κ ≈ 1.6 × 10−5,
see the text after (5.16). Regarding the curvature radius, we
set R̂ = 10, which is already in the Euclidean regime ac-
cording to the fit of the SN Ia distance moduli in Fig. 1,
see the text after (4.10). Parameters extracted from the fit
in Fig. 3 are the flux scale S0,14 ≈ 1.1 × 10−4, the density
scale ρ̂0 ≈ 8.0 × 103, see (6.33) and (6.34), and the cutoff
ε ≈ 0.39 determining the emission time in the upper integra-
tion boundary of N(S) in (6.28). Derived parameters (dis-
cussed above, after (6.34)) are the asymptotic amplitudes
n0 ≈ 31.4, n∞ ≈ 3.9 × 108, and A∞ ≈ 3.5 × 103/deg2, as
well as the break flux Sb,N,14 ≈ 1.19 × 10−2.

7 Conclusions

(1) In Sect. 4.2, we performed a fit of the SN Ia Hubble
diagram covering redshifts up to z ≈ 1.75. In this red-
shift range, the curvature radius of the 3-space enters
only very weakly in the distance modulus plotted in
Fig. 1, as this is still the low-z regime, where the as-
cending series (4.10) and (4.16) of the luminosity dis-
tance and the Hubble parameter can be employed. We
found a linear scaling of the SN Ia luminosity with
the normalized Hubble parameter, L/L0 = h(z), where
h(z) = H(z)/H0 = G(z)/G0, see (2.4), possibly caused
by a dependence of the distance modulus on host-galaxy
metallicity as argued in Gallagher et al. (2008).

(2) In Sect. 5, we investigated the comoving space den-
sity ρ ∝ h1+δ(z)F (Lhλ(z)), with scaling function F

in (5.3). The redshift dependence of ρ(z,L) occurs ex-
clusively via the scaling variable h(z). In Fig. 2, we
showed that the steep initial rise of the AGN space den-
sity can readily be fitted with this ansatz for ρ(z,L) and
the exponents δ = 0 and λ = 6. The scaling function F

in (5.3) models the crossover from power-law increase
to power-law decay and subsequent exponential decay
in the high-luminosity regime; the respective exponents
μ,ν, and κ determining its overall shape are obtained
from the fit in Fig. 2, see the text after (5.16).

(3) In Sect. 6, we studied flux-limited number counts. We
derived the redshift scaling of the flux-parametrized lu-
minosity function and the associated differential and cu-
mulative counting functions, in particular, their depen-
dence on the Hubble parameter as scaling variable, see
(6.7). In Sect. 6.2, we calculated the high-flux and low-
flux asymptotics of the counting functions, arriving at
elementary scaling relations in these limits determined



274 Astrophys Space Sci (2010) 325: 259–275

by the scaling exponents of the AGN luminosity func-
tion and the cosmic expansion factor. In Sect. 6.3, we
assembled the integral representation of the cumulative
count used in the fit of the X-ray source counts in Fig. 3.
A curvature radius above 4×104 Mpc, roughly 10 times
the Hubble distance c/H0, does not noticeably affect
the fit, so that a Euclidean 3-space geometry suffices to
model the counting functions.

The expansion factor, in particular the deceleration pa-
rameter used in the fits in Figs. 1–3 (see (2.6), (3.10), and
(4.2)), and the associated Hubble parameter and gravita-
tional constant (2.4) can be subjected to three other stan-
dard tests, namely, the redshift evolution of linear and angu-
lar diameters as well as the surface brightness test (Sandage
1995), which will be discussed elsewhere.
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