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ABSTRACT
Some topological effects that arise in an infinite and multiply connected universe are
pointed out: the appearance of a chaotic nucleus, topologically induced particle creation and
CP violation, and the temperature anisotropy of the background radiation.

The chaotic center of the Universe

Our basic assumptions are that the Universe is open and that its spacelike slices are
multiply connected and negatively curved (extended Robertson-Walker cosmologies).
Under these conditions there exists a finite region in the infinite 3-space in which the world
lines are chaotic. It is beyond any doubt that some mechanism to generate chaos is needed
to achieve the remarkable uniformity of the galactic background. In these cosmologies it is
the local instability of the world lines and the global topology which induce chaos in a
finite domain, whose size scales with the expansion factor. Moreover there are regular
trajectories which are shadowed over long times by chaotic ones. This could provide an
explanation that perfect equidistribution has not really been attained!-2.

The open and multiply connected 3-space can undergo global metrical deformations
without changing locally its curvature. Different spacelike sections are non-isometric, even
after a rescaling with the expansion factor, in contrast to the traditional simply connected
RW cosmologies. This type of evolution by global deformations is evidently unpredicted
and undetermined by Einstein's equations. In a universe that evolves by such deformations
particle creation occurs, even in conformally coupled neutrino or electromagnetic
fields13.5.

The classical geodesic equations are still reflection invariant in a multiply connected
universe, but the situation is quite different concerning quantum mechanics. A space-
reflected wave packet can wrap around a tiny geodesic loop and overlap with itself. this
gives rise to self-interference, and the unitarity of the parity operator is lost. In particular
CP and CPT are already broken in the free Dirac equationl-24,

Assume for the moment that the spacelike slices are just copies of hyperbolic space
H3. Because H7 is homogeneous, it happens that the eikonal of geometric optics appears in
the phase of the spectral horospherical elementary waves of the Maxwell equations.
Geometric optics does not know the concept of momentum. However, because of this
relation we attach to the rays a momentum via the Einstein relation, and obtain so a vector

field py(x,t;n) on H3, describing the 4-momentum of a horospherical bundle of classical
flow lines issuing from some point 7] at infinity of H3 . A spacelike slice we represent as a
polyhedron F with face-identification in H3. The covering group I is generated by the
face-pairing transformations. We project the horospherical bundles together with the vector
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fields attached to them into F by means of the universal covering projection. A global
deformation of the 3-space (F,I’) is generated by adding a small I-periodic field g;; to the
hyperbolic metric of H3. The perturbed horosphen’cal eikonal for rays issuing at 77 is
v =y +x06m) , v denotes the eikonal on (F,I), and y is a I'periodic scalar field.
The perturbed frequencies are v = v(l+ % %{s), which means that we have to replace in the
Planck distribution p(hvkT)dv the temperature by T = T(l- al,-él%:—"l} This amounts

to an angular variation 7) of the temperature!-3.5,

Fig. 1. The horizon at infinity of the Poincaré half-space H3, the covering space of the spacelike slices

(F, I). The polyhedral tiling ITF) of H3 induces a tiling at infinity which is depicted here. From the fractal
limit set A(T’) one can easily determine the chaotic or nearly chaotic trajectories, which shadow each other
over long times. Their lifts have initial and end points in or close to A(T). Projecting them into the
3-space (F, I') one obtains the chaotic nucleus.
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