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Abstract. An elementary account on the origins of cosmic chaos in an open and multiply connected universe
is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the
mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution.
The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in
this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with
negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the
geometric optics limit are derived. The potential of a static point source in this field theory is a damped
periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study
its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision
Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 keV/c2 and estimate
the tachyonic coupling strength to subluminal matter. The impact of the tachyon field on ground state
hyperfine transitions in hydrogen and muonium is investigated. Bounds on atomic transition rates effected
by tachyon radiation as well as estimates on the spectral energy density of a possible cosmic tachyon
background radiation are derived.

PACS. 05.45.Ac Low-dimensional chaos – 32.10.Fn Fine and hyperfine structure – 98.70.Vc Background
radiations

1 Introduction

Our contemporary understanding of the global structure
of the Universe is based on the assumption of a space-
time continuum, a curved 4-dimensional world. The ob-
servational evidence for this is actually scarce [1,2], but
it offers at any rate a very simple qualitative explanation
of the cosmic redshifts. The second motivation to model
the Universe as a Riemannian 4-manifold is the successful
application of Riemannian geometry in explaining plane-
tary perihelion shifts, and the deflection of light by grav-
itating bodies. These are local phenomena, which can be
explained by introducing a Riemannian metric on a sin-
gle coordinate chart. In cosmology, however, we are con-
cerned with the global structure, with the topology of the
4-manifold.

In local problems of general relativity, Einstein’s
equations determine the evolution of the metric, once the
energy-momentum tensor of the local gravitational sources
is known. In cosmology, however, boundary conditions get
crucial because we cannot assume asymptotic flatness.
Einstein’s equations certainly do not give any hint on the
topology, and the evolution of the metric is likewise un-
determined, because we do not really know the energy-
momentum tensor of the matter distribution in the Uni-
verse, nor the boundary conditions to be imposed. It is
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in my opinion pointless to hunt for elusive laws of cosmic
evolution, the modeling employed in such endeavors is al-
ways copied from finite classical or quantum systems, and
there is no reason to assume that the Universe is a finite
Hamiltonian system like any other. A much more promis-
ing approach to cosmology is to figure out possibilities of
cosmic evolution, and to think over which local physical
manifestations they can have.

The actual question is not so much what is the topol-
ogy, but rather how does it evolve, because otherwise it is
difficult to motivate why the cosmic 3-space should have
acquired, once and for all, a particular type of topology
and metric. What we will advocate here is a cosmology
with an open 3-space [3] that evolves by global deforma-
tions [4] in a way that the constant curvature of the 3-
space is retained. There are three conditions to be satisfied
for the 3-space to admit a dynamical evolution by global
deformations, and for space-time itself to provide a mech-
anism to generate chaos, which can account for the unifor-
mity of the galaxy background. The 3-space must be open,
multiply connected, and hyperbolic (of constant negative
curvature) [5]. Hyperbolicity is needed to generate the in-
stability of geodesics [6–8], and the infinite volume and a
multiply connected topology are necessary to allow evolu-
tion by global metrical deformations; a pictorial descrip-
tion of such deformations can be found in [9]. Finally,
the multiply connected topology confines certain unsta-
ble world-lines to a finite region, the center of the open
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Fig. 1. Algorithmic construction of an open hyperbolic 3-manifold and the fractal limit set determining the chaotic trajectories.
Depicted is a tiling in the complex plane. The tiles are defined by polygons composed of circular arcs. This tiling can be extended
to three dimensions, into the upper half-space (Poincaré half-space H3, endowed with a hyperbolic metric) by placing hemispheres
onto the circular arcs. In this way a tessellation of hyperbolic space is obtained, quite analogous to a crystal lattice in Euclidean
space, though the lattice cells have infinite hyperbolic volume. The symmetry group of this lattice is a discrete subgroup of the
Lorentz group. The lattice cells are polyhedra bounded by the complex plane and the hemispheres. The hyperbolic manifold is
defined by identifying the polyhedral faces of a lattice cell in pairs with symmetry transformations of the lattice. (All cells are
hyperbolically equivalent.) A geodesic in H3 is partitioned by the tessellation into arc pieces intersecting the individual cells of
the lattice, and geodesic motion in the hyperbolic manifold (defined by a polyhedral cell with face identification) is realized by
projecting these arcs into the manifold by means of the symmetry transformations. If the projected H3-geodesic has its initial
and terminal point in the fractal limit set of the tiling, then it intersects infinitely many tiles of the hyperbolic lattice, and its
projection is dense in a finite domain of the hyperbolic manifold, and has the Bernoulli property there. Chaotic trajectories are
confined to this finite domain, the chaotic nucleus of the hyperbolic manifold. If the end points of the H3-geodesic are not quite
in the limit set, but close to it, then its projection is still regular, but shadowed by chaotic trajectories [6]. (This figure is part
of a deformation sequence discussed in [5], but was omitted there.)
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3-space [5,10,11], so that they can get chaotic there, cf.
the caption of Figure 1. Chaoticity is an efficient mecha-
nism to create equidistribution, but the actual problem is
to explain the inhomogeneities in the galaxy distribution.
The time evolution of the world-lines of galaxies depends
on the expansion and on the global deformations that the
3-space undergoes. Concepts like mixing and ergodicity
do not reflect the time evolution, since they are based on
the geometric shapes of geodesics of infinite length. The
mixing in the center tends to create a uniform distribu-
tion, but inhomogeneities will always remain in a finite
time [9]. The evolution of the global topological structure
of the 3-space can get visible in the angular anisotropy of
the temperature of the cosmic microwave background ra-
diation [12]. Adiabatic global deformations of the 3-space
lead to a distortion of the black-body spectrum, due to
slightly angular dependent frequency shifts. These shifts
can be absorbed in the Planck distribution by introduc-
ing an angular dependent temperature variable [13]. As
mentioned, a non-trivial evolution of the hyperbolic 3-
space, via global deformations including topology changes,
requires an open universe [14]. Unlike compact Riemann
surfaces, hyperbolic 3-manifolds of finite volume are rigid,
that is, they cannot be deformed without distorting the
constant curvature. The spectral properties of Riemann
surfaces of infinite area, the two-dimensional analog to
the cosmic 3-space, are discussed in a very transparent
way in [15]; also see Poincaré’s collected papers on this
subject [16].

On a microscopic level, a multiply connected struc-
ture of space-time was suggested by Weyl already in the
twenties [4], and this idea has been revived and extended
by El Naschie and Nottale in terms of a fractal micro-
dimensionality of space-time [17–19]. Parity violation, as a
microscopic topological self-interference phenomenon, was
considered in [20]. Mixmaster cosmologies, chaos in the
Einstein equations, and its various ramifications are dis-
cussed by Rugh in [21,22]. Examples of relativistic chaos
in local gravitational fields, including an invariant charac-
terization of unstable orbits, can be found in [23,24].

In this paper, we study superluminal signals
(tachyons [25–32]); the comoving galaxy frame defines a
distinguished cosmic time order, which unambiguously de-
fines the causality of superluminal signal transfer [33,34],
cf. Section 5 for more discussion on that. Tachyons are
regarded as the eigenmodes of a real vector field with
negative mass square. Like the electromagnetic field, the
tachyon field is conformally coupled to the background
geometry, so that the frequencies of the spectral elemen-
tary waves scale inversely proportional to the curvature
radius of the cosmic 3-space. This allows, despite the time
variation of the background geometry, to use the thermo-
dynamic equilibrium formalism when dealing with the cos-
mic tachyon background radiation, and to scale the time
dependence of the eigenmodes into the temperature vari-
able, which becomes in this way a function of cosmic time.

In Section 2, we sketch the classical mechanics of
tachyons in a Robertson-Walker cosmology, the energy
concept for tachyons in the comoving galaxy frame, the

wave equation for tachyons, a Proca equation with nega-
tive mass square, and its coupling to a subluminal current.
Tachyons are introduced as an extension of the photon
concept, as transversally propagating particles with neg-
ative mass square. This suggests a coupling mechanism
to subluminal matter in analogy to electrodynamics. The
first part of this section is a concise summary of research
published in [35,36], to keep this paper self-contained. The
second part is devoted to new investigations, to quantita-
tive estimates concerning the mixing of tachyonic rays in
the geometric optics limit, which is in fact much more pro-
nounced than for galaxies; its efficiency can be estimated if
one knows the tachyon mass, derived in Section 3, the ex-
pansion factor, and some other cosmological parameters.
We calculate the potential of a static point source in this
field theory, as well as the vector potential of a stationary
current of subluminal particles carrying tachyonic charge,
and introduce tachyonic E and B fields and the tachyonic
analog to Maxwell’s equations.

In Section 3, we treat this tachyon potential as a per-
turbation of the Coulomb potential in the Schrödinger
equation, and estimate its effect on bound states in
hydrogen-like systems. By comparing the induced level
shifts to the discrepancy between Lamb shift measure-
ments and QED calculations in hydrogen, we calculate
the tachyon mass, mt ≈ me/238 ≈ 2.15 keV/c2, and
the tachyonic fine structure constant, β ≈ 1.0× 10−13 ≈
0.66α6, which are the two parameters determining the
tachyon potential. With these numbers, we calculate the
tachyonic B-field of a nucleus of spin one-half, and esti-
mate the effect of this field and of the perturbed ground
state wave function on the ground state hyperfine intervals
of muonium and hydrogen.

In Section 4, we calculate bounds on atomic absorp-
tion and emission rates for tachyon radiation, and give
estimates on the speed of tachyons emitted in atomic tran-
sitions. The spectral energy density of the cosmic tachyon
background radiation is studied. The tachyonic energy
density deviates from the Rayleigh-Jeans low frequency
limit, and we conclude, by comparing tachyonic and pho-
tonic absorption rates, that this deviation could be ob-
servable for wavelengths in the meter range. In the con-
clusion, Section 5, we continue our discussion of tachyons
in this cosmological setting, in particular with regard to
causality and second quantization. In the Appendix, the
tachyonic correction to the ground state wave function of
a hydrogenic system is calculated.

2 The wave equation for tachyons, tachyon
mixing and tachyon potentials

We consider tachyons in an open Robertson-Walker cos-
mology with hyperbolic 3-space, endowed with the line
element dλ2 = −dτ2 + a2(τ)dσ2 (comoving coordinates).
We use as coordinate representation of the 3-space the
Poincaré half-space H3, defined by the metric dσ2 =
u−2(du2 + |dξ|2), with Cartesian coordinates u, ξ1, ξ2;
u > 0, and ξ = ξ1 + iξ2. dσ2 induces constant negative
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curvature −1 on this half-space [37]. Tachyonic world-lines
are defined by a Hamilton-Jacobi equation with negative
mass square, gµνS,µS,ν = µ2(µ2 > 0 in our notation, with
gµν defined by dλ2). The tachyon mass µ varies in cosmic
time inversely proportional to the curvature radius of the
3-space, µ = mt/a(τ). (The wave equation for tachyons
is conformally coupled, see the discussion following (2.3),
which requires a tachyon mass varying in cosmic time.)
This cosmic time scaling reminds of the varying funda-
mental constants of Eddington, Milne, and Dirac [38–41].
It is sufficient to determine the world-lines along the u-
semiaxis of H3, all other trajectories can be obtained by
means of symmetry transformations [37], since H3 is ho-
mogeneous. The tachyonic world-lines read

u(τ) = exp
(
δ(s)

∫
a−1dτ

)
, δ(s) :=

s√
s2 −m2

t

,

(2.1)

with an integration parameter |s| > mt. If we focus on
trajectories orthogonal to the complex plane, we can use
the action S = −

√
s2 −m2

t

∫
a−1dτ+s logu, the trajecto-

ries (2.1) being recovered from ∂S/∂s =const. Tachyonic
energy, velocity and momentum read as

E =
µ√
|v|2 − 1

=
1

a(τ)

√
s2 −m2

t ,

|v| = |δ(s)|, |p| = |s|
a(τ)
· (2.2)

In the case of photons, the eikonal approximation is exact
in Robertson-Walker cosmologies, because the electromag-
netic potential is conformally coupled to the background
metric, which means here that the frequencies scale with
the inverse of the expansion factor. We also want to retain
this property for particles with negative mass square. We
view tachyons as an extension of the photon concept, and
use as wave equation a Proca equation with negative mass
square,

1√−g
∂(
√−gFαβ)
∂xβ

− µ2Aα = jα, (2.3)

for a real vector potential Aα with Fαβ = Aβ,α − Aα,β
and µ = mt/a(τ), mt > 0. The choice of this wave equa-
tion as an extension of electrodynamics rather than of
subluminal classical mechanics is also suggested by the
fact that tachyons do not have a rest mass. The current
in (2.3) is supposed to be structured like in electrody-
namics, and thus a well defined interaction mechanism
of a tachyon field with subluminal particles, analogous to
classical electrodynamics, is specified by (2.3). Tachyonic
world-lines are analogous to the light-rays of geometric
optics; tachyons do not carry any kind of charge; electric
and tachyonic charge is a property of subluminal particles,
the sources of tachyonic and electromagnetic fields.

The curvature radius of the 3-space is Ra(τ), a(τ0) = 1
at the present epoch. To restore the natural units, we
replace in the wave equation mt by mtc/~. The phase

of the spectral modes of freely propagating waves coin-
cides with the classical action. (This is easy to check
for plane waves transversally propagating along the u-
semiaxis, whose phase is the action specified after (2.1);
the spectral decomposition of the wave equation is de-
rived in [35].) Hence, energy and momentum are propor-
tional to frequency and wave vector, so that ω = E/~, and
−λ = ~/|p|; the eikonal approximation is exact, due to the
conformal coupling of the wave field, achieved by the time
variation of the tachyon mass. Likewise, group and particle
velocity coincide, |vgr| = c2|vphase|−1 = c|δ(s)|, and can
be made arbitrarily large by the choice of the integration
parameter (spectral variable) s.

Next we turn to tachyon mixing in an open and mul-
tiply connected 3-space, cf. Section 1. At first we consider
a tachyon moving along the u-semi-axis of H3 with speed
cδ(s), passing through (τ0, u0 = R). We consider a Milne
universe, so that a(τ) = τ/τ0, τ0 = 1/H0 ≈ 14.4 Gyr
(based on h0 ≈ 0.68, [42]), andR0 = c/H0 ≈ 1.3×1028 cm.
Equation (2.1) now reads as u = R(τ/τ0)δ. We assume
δ > 0, so that the tachyon moves the u-semiaxis up-
wards, having been emitted at (τem, uem), τem < τ0. At
the present epoch τ0, the metric distance between u0 and
uem is d(u0, uem) = R log(u0/uem). If this distance is
n-times the curvature radius, then uem/R = e−n, and
∆τn := τ0 − τem = τ0(1 − exp(−n/δ)). This relation
holds for every tachyonic world-line, because of the ho-
mogeneity of H3. If n/δ ≈ 1, we find ∆τn ≈ 0.6τ0.
The frequencies of the tachyonic spectral waves relate
to the velocity of the classical tachyonic world-lines via
hν = mtc

2(v2/c2 − 1)−1/2, v2/c2 = δ2, at the present
epoch, as pointed out above. We find δ ≈ 3.6× 108, with
a tachyon mass of 2.15 keV/c2 (see after (3.12)), if the
tachyon is emitted in a hydrogen ground state hyperfine
transition (see after (4.7)). The tachyon is trapped in the
chaotic nucleus of the 3-space (cf. the caption of Fig. 1
and [5,10,11] for details), if its covering geodesic in H3 has
its initial and terminal points in the limit set of the hyper-
bolic tiling. If the diameter of the chaotic nucleus of the
3-space is of the order of the curvature radius, and if the
tachyon was emitted at τem ≈ 0.4τ0, then the trajectory
consists of roughly n ≈ δ arcs in the lattice cell represent-
ing the hyperbolic 3-space, cf. Figure 1, because its cover-
ing geodesic in H3 intersected n tiles within the past 0.6τ0
years. Even for moderate n, these arcs are very uniformly
distributed in the center of the 3-space, by virtue of the
Bernoulli property. Indeed, computer experiments on com-
pact Riemann surfaces [8] demonstrate impressively, that
a very uniform cover of the manifold is already achieved
with rather few arc pieces. Whatever the speed of the
tachyon, its world-line gets dense in the chaotic nucleus
in the limits τ → 0,∞, provided the initial or terminal
point of the covering trajectory lies in the limit set, so that
it intersects infinitely many lattice cells. If the expansion
factor has turning or inflection points, a tachyonic world-
line can even get dense in the chaotic nucleus within a fi-
nite time [9]. Another startling feature of tachyons, caused
by the space expansion but independent of the topology
of the 3-space, are mirror images; a tachyon may appear
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simultaneously at different locations in the geodesic rest
frame of a uniformly moving observer [35].

The finite chaotic nucleus is not a differentiable mani-
fold, but the entropy of the geodesic flow trapped in this
domain can be defined very much like on a compact man-
ifold. The topological and measure theoretic definitions of
entropy turn out to be equivalent; these equilibrium en-
tropies coincide with the Hausdorff dimension of the limit
set of the covering group [7]. Both entropy definitions as-
sume that the covering trajectories extend from infinity
to infinity, reaching in both limits τ → 0,∞ the bound-
ary of the covering space. This happens to be the case in
the Milne universe, but other expansion factors may re-
sult in a truncation of the covering trajectories in one or
both of these limits (appearance of horizons), and hence in
truncated Bernoulli sequences [14], and then neither the
topological nor the measure theoretic entropy concept is
applicable. One should also keep in mind that these en-
tropies are static; they relate to the geometric shape of the
trajectories (which is in fact independent of the expansion
factor, apart from a possible truncation), but are other-
wise not affected by the time evolution of the geodesic
flow. The efficiency of the mixing mechanism within a fi-
nite period of cosmic time crucially depends both on the
time evolution of the trajectories and the Hausdorff di-
mension of the limit set.

Next we turn to the generation of tachyonic waves and
to the tachyon potential of a static point source. We use
locally geodesic coordinates, i.e., replace the space-time
metric by Minkowski space, ηαβ := diag(−c2, 1, 1, 1), and
restore the natural units. The field equations (2.3) decom-
pose into four components, (� + µ2)Aα = −c−1jα, with
the d’Alembertian � := ηµν∂µ∂ν and µ := mtc/~ > 0,
subject to the Lorentz condition Aα,α = 0. We write
jα = (ρ, j), and calculate the potential of a static point
source defined by ρ = qδ(x) and j = 0, where q is the
tachyonic charge of the source,

A0 =
q

4πc
1
r

(
cos(µr) + λ̃ sin(µr)

)
, A = 0. (2.4)

Contrary to massless or subluminal fields, we cannot de-
termine the integration constant λ̃ in (2.4) by a decay
condition at infinity. To demonstrate that λ̃ = 0, we write
the wave field as

Aα(x) =
∫

R4
G(x− x′)jα(x′)dx′, (2.5)

(�+ µ2)G(t,x) = −c−1δ(t)δ(x). (2.6)

For positive mass square, µ2 < 0 in our notation, the
general solution of this inversion problem is standard, for
negative mass square, it can readily be inferred from the
subluminal case by analytic continuation in the mass pa-
rameter, m → ±imt. (Some care must be taken with re-
gard to the branch cuts of the Bessel functions.) Tachyons
can never reach subluminal speed, i.e., they cannot con-
nect events with timelike separation, and therefore the
boundary condition for the Green function is to vanish in
the interior of the light cone. This already determines G

uniquely, without any further decay conditions, as

G(t,x) =
1

4π
δ(r2 − c2t2)

− µ

8π
θ(r2 − c2t2)

J1

(
µ
√
r2 − c2t2

)
√
r2 − c2t2

· (2.7)

This Green function is time symmetric, there is no tachy-
onic retarded or advanced Green function supported
outside the light cone; G in (2.7) is the analogue to
(1/2)(Gret +Gadv). (Retarded and advanced Green func-
tions of subluminal particles are supported on the two
disconnected components of the interior light cone.) A dis-
cussion of tachyonic Liénard-Wiechert potentials, in par-
ticular a detailed study of time-symmetric wave prop-
agation via the Green function (2.7), its semiclassical
meaning, its cosmological causality interpretation, and
its relation to the cosmic absorber theory of Wheeler-
Feynman [43] will be given elsewhere. We readily calcu-
late, via (2.7) and (2.5), the potential of a static tachyonic
charge; the spatial integration is trivial, and the time inte-
gral over the Bessel function is standard, and we recover
(2.4) with λ̃ = 0. In Section 3, we will study frequency
shifts induced by this potential in hydrogen, and infer in
this way the tachyon mass and the coupling constant of
the tachyon potential.

In analogy to Maxwell’s equations, one can introduce
tachyonic E and B fields related to the vector potential
Aα by

Ei = c−1Fi0 , Fij = εijkB
k,

Bk = (1/2)εkijFij = εkijAj,i = rotA, (2.8)

so that the field equations (2.3) read (in Minkowski
space) as

divB = 0 , rotE + c−1∂B/∂τ = 0,

divE = ρ− c−1µ2A0, rotB− c−1∂E/∂τ = c−1j + µ2A.
(2.9)

Evidently, the vector potential is a measurable quantity, as
there is no gauge freedom. TachyonicE and B fields act on
subluminal particles (mass m) via a Lorentz force, based
on the Hamilton-Jacobi equation ηµν(S,µ−c−1qAµ)(S,ν−
c−1qAν) = −m2c2.

In the next section, we will need the tachyonic vector
potential generated by a stationary current, which can
easily be calculated via (2.5) and (2.7),

Aα(x) =
1

4πc

∫
R3

cos(µ|x− x′|)
|x− x′| jα(x′)dx′. (2.10)

The B-field corresponding to this potential reads as

B(x) =
1

4πc

∫
R3

gradx

(
cos(µ|x− x′|)
|x− x′|

)
× j(x′)dx′,

(2.11)

which is the Biot-Savart law for negative mass square. The
following procedures are familiar from electrodynamics
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with a finite photon mass, cf. [44] and references therein.
The gradient expansion of the spatial part of the vector
potential (2.10) reads

4πcA = r−1 cos(µr)
∫

j(x′)dx′

−
∫

(∇(r−1 cos(µr)) · x′)j(x′)dx′ + ... (2.12)

This expansion only holds if µ|x′| � 1 on the support
of the current. This is an important restriction, in addi-
tion to the usual assumption that the coordinate origin
is centered at the support of the current, and r is large
compared to the diameter of the support. In Section 3 we
will derive µ−1 = −λ C

t
≈ 0.9 Å, which disqualifies the gra-

dient expansion for macroscopic charge distributions (also
compare the discussion of (2.16, 2.17)) , but for nuclear
dipole moments it is quite appropriate.

In discrete notation, j(x′) =
∑
qv′ = (d/dt)

∑
qx′,

and

2
∑

q(x · x′)v′ =
∑

q((x · x′)v′ − (x · v′)x′)

+ (d/dt)
∑

q(x · x′)x′;

the time derivative of
∑
q(x · x′)x′ vanishes, because the

current is stationary. Hence, by a standard vector identity,
we may write (2.12) as

4πcA = (V (r)/2)
∫

x× (x′ × j(x′))dx′,

∇(r−1 cos(µr)) = V (r)x,

V (r) := −r−3 cos(µr)(1 + µr tan(µr)),

or, with the magnetic dipole moment,

A = (4π)−1∇
(
r−1 cos(µr)

)
×m,

m := (2c)−1

∫
x× j(x)dx. (2.13)

The B-field is then obtained, via (2.8) and a further vector
identity, as

B = (4π)−1(m · ∇)∇
(
r−1 cos(µr)

)
− (4π)−1mdiv

(
∇
(
r−1 cos(µr)

))
, (2.14)

or, by means of div
(
∇
(
r−1 cos(µr)

))
= −µ2r−1 cos(µr),

as

B =
1

4π
cos(µr)
r3

[(
1 + µr tan(µr) − 1

3
µ2r2

)
×
(

3
(
m · x

r

) x
r
−m

)
+

2
3
µ2r2m

]
. (2.15)

The first term in (2.15) is formally a multiple of the elec-
tromagnetic dipole field, but the second term mimics an
external magnetic field (anti-)parallel to the dipole. A

similar (but non-periodic) external field emerges in elec-
trodynamics with a finite photon mass, and the dipole
field of the Earth has been used to obtain bounds on this
mass [44]. However, the expansion underlying (2.13–2.15)
only applies to microscopic dipoles; in the next section
we will study the effect of a nuclear tachyonic B-field on
hyperfine transitions.

The zeros of the tachyon potential are spaced in inter-
vals ∆r = π−λ C

t
≈ 2.9 Å. Hence, if the tachyon potential

is generated by an extended macroscopic charge distribu-
tion, it will not be so easily detectable, because of aver-
aging effects, and the same holds for tachyonic E and B-
fields. For example, anomalous magnetic moments deter-
mined by g−2 experiments would not be affected in a no-
ticeable way, as the B-field is generated by a macroscopic
magnet. We consider a tachyonic charge q, uniformly dis-
tributed in a ball of radius R. The tachyon potential of
this charge is the real part of

ϕR(x) =
q

4πc

(
4π
3
R3

)−1 ∫
|x′|≤R

eiµ|x−x′|

|x− x′| dx′

=
3

8πc
q

R3

i
µr

∫ R

0

r′dr′
(

eiµ|r−r′| − eiµ(r+r′)
)
.

(2.16)

For |x| > R, we find

ϕR(r) = − 3
4πc

q

µ2R2

(
cos(µR)− 1

µR
sin(µR)

)
eiµr

r

=
q

4πc
(1 +O(µ2R2))

eiµr

r
·

(2.17)

Clearly, if µR � 1, this effectively means a reduction of
the charge, but in the case of nuclei, the opposite limit, as
indicated in (2.17), safely applies.

3 The effect of the tachyon potential
on Lamb shifts and hyperfine transitions
in hydrogenic systems

We treat the local Euclidean limit of the tachyon po-
tential (2.4) (with λ̃ = 0) as a perturbation of the
Coulomb potential, and write the Schrödinger equation
for a hydrogen-like system as

∆Ψ +
2m
~2

(E − U)Ψ = 0, U(r) = −α
r

+
β

r
cos(µr),

(3.1)

α > 0, µ = mtc/~ > 0. We will investigate bound
states of (3.1), and calculate level shifts induced by the
tachyon potential. By assuming that these shifts can ac-
count for the discrepancy of experimental and theoretical
Lamb shifts in hydrogen, we derive the tachyon mass and
the coupling constant β of the tachyon potential. We will
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focus on the ground state and the 2S Lamb shifts in hy-
drogen, because there are several recent and rather inde-
pendent high precision measurements available, and the
present QED calculations for hydrogen are more reliable
than for any other hydrogen-like system.

In (3.1) we use the standard ansatz for a spheri-
cally symmetric potential, Ψ = r−1ul,E(r)Yl,m(ϑ, ϕ), with
spherical harmonics normalized on the unit sphere, Y0,0 =
(4π)−1/2, etc. The radial equation reads

d2

dr2
ul,E(r) +

2
a

(
E

α
+

1
r
− a

2
l(l + 1)
r2

−λcos(µr)
r

)
ul,E(r) = 0, (3.2)

with Bohr radius a = ~2/(mα) and expansion parameter
λ := β/α. Standard perturbation theory gives

E = E0 + λE1 +O(λ2),

E1 =
∫ ∞

0

u0(r)u0(r)
α

r
cos(µr)dr, (3.3)

with the eigenvalues E0 = −α/(2an2) and the normal-
ized radial eigenfunctions u0 of the unperturbed Coulomb
problem,(

− d2

dr2
+

1
a2n2

− 2
ar

+
l(l + 1)
r2

)
u0(r) = 0, (3.4)

∫∞
0
u0u0dr = 1. We will focus on the 1S1/2, 2S1/2 and

2P1/2,3/2 levels; the corresponding solutions of (3.4) and
the corrections (3.3) to the Coulomb levels E0(n) read

u
(n=1,l=0)
0 =

2
a3/2

re−r/a,

E
(n=1,l=0)
1 =

α

a

1− a2µ2/4
(1 + a2µ2/4)2

, (3.5)

u
(n=2,l=0)
0 =

re−r/(2a)

√
2a3/2

(
1− r

2a

)
,

E
(n=2,l=0)
1 =

α

4a
(1− 6a2µ2 + a4µ4)(1− 2a2µ2)

(1 + a2µ2)4
, (3.6)

u
(n=2,l=1)
0 =

r2e−r/(2a)

2
√

2
√

3a5/2
,

E
(n=2,l=1)
1 =

α

4a
(1− 6a2µ2 + a4µ4)

(1 + a2µ2)4
· (3.7)

It is convenient to define the energy levels as positive,
so that E(1S) = −(En=1

0 + Erel,QED
1S ) + Etach

1S , Etach
1S :=

−λE(n=1,l=0)
1 , and analogously, Etach

2S := −λE(n=2,l=0)
1

and Etach
2P := −λE(n=2,l=1)

1 . The standard theoretical cor-
rection to E0 is indicated by Erel,QED, comprising the rel-
ativistic correction as well as the tabulated Lamb shift
(including finite-size effects, etc.). Furthermore, we define

α̂ := α/(~c), β̂ := β/(~c), µ̂ := aµ, (3.8)

so that a = ~/(mcα̂). Clearly, β̂ is the tachyonic ana-
logue to the electric fine structure constant α̂ ≈ 1/137.
Quite analogously to α = e2/(4π), we may write β =
qeqp/(4π), with the tachyonic charges of electron and pro-
ton, respectively, and µ̂α̂ denotes the tachyon mass in
units of the reduced mass of electron and proton, m ≈
me ≈ 0.511 MeV/c2. We write Etach

1S−2S := Etach
1S − Etach

2S ,
and Eth

1S−2S := Eth
1S − Eth

2S , with the theoretical stan-
dard results Eth

1S := −(En=1
0 + Erel,QED

1S ) and Eth
2S :=

−(En=2,l=0
0 + Erel,QED

2S ), and analogously for the other
levels. The experimental 1S − 2S transition energy is de-
noted by Eex

1S−2S . The difference between the measured
energy and the theoretical standard result is denoted by
Eex−th

1S−2S := Eex
1S−2S − Eth

1S−2S , and the tachyonic correc-
tion Etach

1S−2S is supposed to compensate this difference. We
find, by means of (3.5–3.7),

Etach
2S−2P

mc2
=
α̂β̂

2
y(1− 6y + y2)

(1 + y)4
, y := µ̂2, (3.9)

Etach
1S−2S

mc2
=
α̂β̂

4
14y5 − 3y4 − 96y3 − 175y2 − 360y− 48

(4 + y)2(1 + y)4
,

(3.10)

Etach
1S−2P

mc2
=
α̂β̂

4
16y5 + y4 − 158y3 − 351y2 − 328y− 48

(4 + y)2(1 + y)4
·

(3.11)

Sign changes are determined by the positive zeros of
Etach(µ̂); in (3.9) we find µ̂(1) ≈ 2.414 and µ̂(2) ≈ 0.414,
the zero of (3.10) is µ̂ ≈ 1.903, and the zero of (3.11) is
µ̂ ≈ 2.011.

A recent measurement [45] of the ground state
and the 2S Lamb shifts in hydrogen gives Lex

1S(H) =
8172.876(29) MHz and Lex

2S(H) = 1045.0079(72) MHz, re-
spectively. As for the standard theory, the current esti-
mates are Lth

1S(H) = 8172.797(40) MHz and Lth
2S(H) =

1045.0036(50) MHz, [45,46]. We have Eex−th
1S−2S = Lth

1S −
Lex

1S + Lex
2S − Lth

2S, and in the experimental work the the-
oretical 2P Lamb shifts [47,48] are used, so that we can
assume Lex

2P = Lth
2P in Eex−th

2S−2P = Lth
2S −Lex

2S +Lex
2P −Lth

2P .
Accordingly, νex−th

1S−2S = −0.0747(810) MHz, and νex−th
2S−2P =

−0.0043(122) MHz. The tachyon mass can then be deter-
mined from the quotient of (3.10) and (3.9) (y := µ̂2),

νex−th
1S−2S

νex−th
2S−2P

=
1
2y

(
1− 2y − 16(4− y)(1 + y)4

(1− 6y + y2)(4 + y)2

)
. (3.12)

This equation has at least one and at most three positive
solutions, depending on the frequency quotient. With the
indicated frequencies, we find two solutions, µ̂ = 0.576,
and µ̂2 = 2.576, and the corresponding tachyonic cou-
pling constants then follow from (3.9) or (3.10): β̂ =
1.0 × 10−13 ≈ 0.66α̂6, and β̂2 = −9.3 × 10−13. A recent
Lamb shift measurement in singly-ionized helium suggests
that µ̂ and β̂ is the relevant solution, see after (3.13).
Tachyon mass and Compton wave length then read as
mt = mα̂µ̂ ≈ 2.15 keV/c2 and −λ C

t
= µ−1 ≈ 238−λ C

e
≈
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0.92 Å, respectively. For comparison, a tachyon mass of
3.0 keV and a tachyonic coupling constant of 6.4× 10−14

was obtained in [36] by Bohr quantization and a sin-
potential, with slightly different input data for νex−th

2S−2P (H)
and νex−th

1S−2S(H). Other promising candidates for a deter-
mination of the tachyon potential in hydrogen are the
very precisely measured 2S−6S and 2S−6D5/2 intervals,
cf. [49], or combinations (2S−4P1/2,3/2)−(1/4)(1S−2S),
cf. [50], or (2S − 4S, 4D5/2) − (1/4)(1S − 2S), cf. [51].
However, if higher levels are involved, the calculations
get tedious due to the increasing order of the Laguerre
polynomials in the eigenfunctions. The recently measured
muonium 1S − 2S interval, νex−th

1S−2S(M) = 5.6(9.8) MHz,
cf. [52], is by two orders too inaccurate. As β̂ is positive,
the tachyonic charges of proton and electron are equal in
sign, and we assume, that they are equal in magnitude
as well, so that qe = qp =: q, and q2/e2 = 1.4 × 10−11.
Evidence for this assumption could be provided by Lamb
shifts in positronium [53], but current measurements and
QED calculations do not match the precision of the hy-
drogen results.

The energy differences (3.9–3.11) also apply to hydro-
genic ions, if we perform the substitutions

α̂→ α̂Z, β̂ → β̂Z, µ̂→ µ̂/Z. (3.13)

The tachyon mass mt should be independent of the
charge number of the nucleus, which requires the indicated
scaling of µ̂. The linear Z-scaling of the tachyonic fine
structure constant is based on the assumption that the
potentials of tachyonic charges are additive like electric
ones. m ≈ me is now the reduced mass of nucleus and
electron. In [35] we assumed a power law, β̂ → β̂Z7, to ac-
count for the rather large discrepancies between the QED
calculations and the Lamb shift measurements in highly
charged hydrogenic ions, but the error bounds in these
measurements are still very large, see below.

The tachyonic correction ∆Etach
L :=

(mc2)−1Etach
2S−2P1/2

, cf. (3.9), is to be compared to

∆EL := (mc2)−1Eex−th
2S−2P1/2

, where Eex−th
2S−2P1/2

= Lth−Lex,
in terms of the 2S − 2P shift. The best result
currently available for hydrogenic ions is that for
singly-ionized helium, ∆EL(He+) = 3.2(24.3) × 10−16,
calculated with Lex(He+) = 14041.13(17) MHz and
Lth(He+) = 14041.17(13) MHz, cf. [54]. The tachy-
onic correction, ∆Etach

L (He+) = 4.5 × 10−17, is still
by one order of magnitude smaller than the present
discrepancy between experiment and theoretical stan-
dard result. Had we taken the roots µ̂2 and β̂2 for
tachyon mass and tachyonic fine structure constant,
as given after (3.12), we would have arrived at a shift
∆Etach

L (He+, µ̂2, β̂2) = 2.8×10−15, which is only narrowly
within the error bounds defined by Lex,th(He+).

For medium-sized or heavy ions, we may consider the
Z →∞ limit of (3.9) and (3.11),

∆Etach
L =

Etach
2S−2P

mc2
∼ α̂β̂

2
µ̂2 ≈ 1.2× 10−16,

Etach
1S−2P

mc2
∼ −3

4
α̂β̂Z2 ≈ −5.5× 10−16Z2. (3.14)

The following examples are taken from Table 20 of [55];
as conversion constant we use h/(mc2) ≈ 8.09 ×
10−21 s. In the low Z-range: ∆EL(F8+) = 3.3(29.0) ×
10−11, ∆EL(O7+) = 3.2(9.7) × 10−11. In the in-
termediate Z-range: ∆EL(Ar17+) = 2.9(3.2) × 10−9,
∆EL(S15+) = 0.88(61) × 10−9. As for ground state
Lamb shifts, we define ∆E1S2P := (mc2)−1Eex−th

1S−2P1/2,3/2

(to be compared to (mc2)−1Etach
1S−2P in (3.14)), put

Eex−th
1S−2P1/2,3/2

= Lth
1S − Lex

1S + Lex
2P1/2,3/2

− Lth
2P1/2,3/2

,
and assume Lex

2P1/2,3/2
= Lth

2P1/2,3/2
, as done in exper-

imental work. We find in the intermediate Z-range,
cf. Table 19 of [55], ∆E1S2P (Ar17+) = −9.8(33.0) ×
10−9 and ∆E1S2P (Kr35+) = −1.9(10.0) × 10−7, and for
heavy ions, ∆E1S2P (Au78+) = −1.2(30.0) × 10−5, and
∆E1S2P (U91+) = −6.7(26.0)× 10−6. It is clear that these
results are too inaccurate to allow for a test of the asymp-
totic estimates (3.14).

Next we study the effect of the tachyon field on the
hyperfine splitting in hydrogen and muonium. The for-
malism is more or less the same as in the derivation of
the Fermi formula, cf. [53] and references therein. We
start with the Pauli equation for a subluminal particle of
mass me, coupled by minimal substitution to the tachyon
potential,

1
i
∇0Ψ =

~
2me

(
∇k∇k +

q

~c
σiε

iklAl,k
)
Ψ, (3.15)

∇α := ∂α − iq/(~c)Aα, with tachyonic charge density ρ =
qΨ t∗Ψ . The Hamilton operator corresponding to (3.15)
reads as

H = − ~2

2me

(
∇k∇k +

q

~c
σ · rotA

)
− q

c
A0. (3.16)

The perturbation generated by the tachyonic B-field is
accordingly

HHFS = −qe/(mec)S ·B, S = (~/2)σ, (3.17)

with A and B as in (2.13–2.15). Here, me and qe denote
mass and tachyonic charge of the electron, S is the spin
operator of the electron, and σ the vector of Pauli matri-
ces. We will apply HHFS only to wave fields with radial
symmetry, when calculating expectation values. Hence,
when integrating over the unit sphere, we may replace
in the B-field (m · x)x by (1/3)mr2 without changing
the integral. Therefore we can replace in the first term of
(2.14) (m · ∇)∇ by (1/3)m∆, and use in the subsequent
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calculations

B = − 1
6π

m∆
cos(µr)

r
,

∆
cos(µr)

r
= −4πδ(x)− µ2 cos(µr)

r
· (3.18)

We consider a nucleus of spin one-half, so that

m = gnµnI/~, µn =
qn~

2mnc
, I = (~/2)σ. (3.19)

I is the nuclear spin operator, µn denotes the tachyonic nu-
clear magneton (not to be confused with the tachyon mass
µ = mtc/~), mn is the nuclear mass, qn is the tachyonic
charge of the nucleus, and the nuclear g-factor is denoted
by gn. In the case of muonium, we take the Dirac value
gn = 2; when calculating the very tiny effect of the tachyon
potential, we neglect of course QED corrections. For the
same reason, we have already put the g-factor of the elec-
tron equal two in (3.16), according to the non-relativistic
limit (3.15) of the Dirac equation.

We calculate the expectation value of HHFS with the
normalized ground state wave function of the unperturbed
Coulomb problem, which reads Ψ(x) = π−1/2a−3/2e−r/a,
with Bohr radius a = ~/(mcα̂), where m denotes the
reduced mass of electron and nucleus. We do not con-
sider hydrogen-like ions here, the nucleus carries one pos-
itive electric charge and spin 1/2. The spin space of nu-
cleus and electron is generated by a basis |F,M〉, defined
in the usual way by the z-component of F := S + I,
F3|F,M〉 = M~|F,M〉 and F2|F,M〉 = F (F+1)~2|F,M〉.
(Both S and I are spin one-half operators.) We so obtain
a singlet |0, 0〉 and a triplet |1, 0〉, |1,±1〉, as base vectors.
As 2S · I = F2 − I2 − S2 and I2 = S2 = (3/4)~2, we find

〈S · I〉F := 〈F,M |S · I|F,M〉 = (~2/2)(F (F + 1)− 3/2);
(3.20)

F can only take the values one and zero, and this expecta-
tion value is independent of M . The unperturbed ground
state wave function is thus |Ψ, F,M〉 = Ψ(x)|F,M〉, and
we calculate with (3.17–3.19),

〈Ψ, F,M |HHFS|Ψ, F,M〉 = −2
3
qegnµn

mec~
〈S · I〉F |Ψ(0)|2

×
(

1 +
µ2

4π|Ψ(0)|2
∫
|Ψ(x)|2 cos(µr)

r
dx
)
, (3.21)

〈HHFS〉F =
4
3
gnα̂

4 〈S · I〉F
~2

mec
2me

mn

(
1 +

me

mn

)−3

× β̂

α̂

(
κ(1− κ)
(1 + κ)2

− 1
)
, (3.22)

β̂ :=
qeqn
4π~c

, κ :=
1

4α̂2

m2
t

m2
e

(
1 +

me

mn

)2

. (3.23)

If we drop the last two factors in (3.22), and put gn = 2,
we recover Fermi’s formula for the ground state hyperfine
splitting. We have 〈S · I〉F=1 = ~2/4 and 〈S · I〉F=0 =
−3~2/4, cf. (3.20). The tachyonic B-field of the nu-
cleus changes the theoretical standard result (Fermi for-
mula with QED corrections, etc., cf. [53]) for the ground
state hyperfine interval by an amount ∆Etach(B) =
〈HHFS〉F=1 − 〈HHFS〉F=0, inducing a frequency shift

∆νtach(B) = ∆νF β̂

α̂

(
κ(1− κ)
(1 + κ)2

− 1
)
, (3.24)

∆νF :=
4
3
gnα̂

4mec
2

h

me

mn

(
1 +

me

mn

)−3

. (3.25)

We find κ = 0.083, based on mt = 2.15 keV/c2, me/mt ≈
238 and mn = ∞. Moreover, β̂/α̂ = 1.4 × 10−11, see
after (3.12).

In (3.21–3.25), we used the unperturbed ground state
wave function of the Coulomb problem, neglecting the
λ-term in (3.2), because HHFS = O(λ). (We defined
λ = β̂/α̂, cf. (3.2, 3.8).) Nevertheless, there is still an
O(λ)-contribution of the perturbed ground state wave
function (3.1) to the hyperfine splitting. The electromag-
netic hyperfine splitting as given by the Fermi formula
reads

〈HHFS〉EM =
1
3

e2gn

mnmec2
〈S · I〉F |Ψ(0)|2, (3.26)

which follows from (3.21) by substituting qe = e, qn = −e,
and µ = 0. In (3.26) we have to use for |Ψ(0)|2 the per-
turbed ground state function as defined by (3.1) and cal-
culated to order O(λ) in the Appendix. This perturbation
results in a shift

∆νtach(Ψ) = ∆νF β̂

α̂
a3/2 û1(r)

r

∣∣∣∣
r=0

, (3.27)

cf. (A.12, A.9). In (A.9) we insert µ̂ = 0.576 (see af-
ter (3.12)), so that a3/2(û1(r)/r)r=0 ≈ −3.35. Hence, the
total frequency shift induced by the tachyon field of the
nucleus (singly charged, spin one-half) is

∆νtach := ∆νtach(B) +∆νtach(Ψ) ≈ −6.0× 10−11∆νF,
(3.28)

to be added to the theoretical standard result, denoted in
the following by ∆νQED.

In muonium, the Fermi formula gives
∆νF(M) = 4453839.4(5) kHz (with gn = 2,
cf. [53]), so that ∆νtach(M) ≈ −0.27 Hz, which
is too small to account for the current differ-
ence [56] of ∆νQED(M) = 4463 302 563(510) Hz and
∆νex(M) = 4463 302 765(53) Hz. In hydrogen, we have
∆νF(H) = 1418.840 29(14) MHz (with gn = 5.58...),
so that ∆νtach(H) ≈ −0.085 Hz, which is to be
compared to ∆νQED(H) = 1420.45199(14) MHz and
∆νex(H) = 1420.405 751 766 7(9) MHz, cf. [53]. In
muonium, the contribution of the tachyon potential is
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negligible given the error bound on experimental and
theoretical results; the same holds for the tachyonic
correction to the muonium ground state Lamb shift, as
mentioned after (3.12). As for hydrogen, the tachyonic
correction is within the precision of the measured value,
but the theoretical standard result is way too inaccurate,
due to the poorly known charge distribution in a proton
and other finite size effects.

4 Cosmic tachyon background radiation

As the tachyon frequencies depend on cosmic time only
via a scale factor, ν = ν0/a(τ), cf. (2.2) and the remarks
following (2.3) and (4.7), one can use the equilibrium dis-
tribution of a free Bose gas to describe the cosmic tachyon
background radiation and scale the time dependence of
the frequencies into the temperature variable. Based on
the free wave equation (2.3), one obtains by standard box
quantization the spectral energy density

ρtach(ν)dν =
8π
h3

E(p)p2dp
exp(βE(p)) − 1

=
8πh
c3

dν ν2
√
ν2 +m2

t c
4/h2

exp(βhν)− 1
,

E(p) = hν = c
√
p2 − (mtc)2, β−1 = kT (τ),

T (τ) = T0/a(τ). (4.1)

The general formalism and the conditions on wave lengths
and curvature radius for Euclidean box quantization to
apply are discussed in [35]. In the thermodynamic limit,
the connectivity of the open 3-space does not affect the
spectral energy density [13], apart from possible angu-
lar fluctuations in the temperature, generated by global
metrical deformations, cf. Section 1, and ρtach(ν) is even
independent of the sign of the space curvature.

The tachyon mass of mt ≈ 2.15 keV/c2 corresponds
to a Compton wave length −λ C

t
≈ 0.9 Å, see after (3.12).

This is the maximal wave length that can be attained, in
the limit of infinite speed and zero energy, since λt =
λC

t

(
1 + (λC

t ν/c)
2
)−1/2. As the tachyon radiation is in

equilibrium with the photon background at 2.73 K, we
have mtc

2/(kT0) ≈ 9.1× 106 and βh = 1.76× 10−11 s. (β
should not be confused with the coupling constant of the
tachyon potential, cf. (3.1); only the tachyonic fine struc-
ture constant β̂ as defined in (3.8) is used in this section).
In the high frequency limit, Wien’s radiation law is still
recovered, but not so the Rayleigh-Jeans law in the low
frequency regime, because

ρtach(ν → 0) ∼ 8π
ch
mtνkT, (4.2)

linear in frequency. Wien’s displacement law is not valid
either, as the peak of ρtach(ν) depends on the tachyon
mass. Defining x := βhν and γ := mtc

2/(kT ), we find the
location of the peak by solving

x

1− e−x
= 2 +

x2

x2 + γ2
· (4.3)

For the photon background, this means x(γ = 0) ≈ 2.822,
and for the tachyon background x(γ → ∞) ≈ 1.594 ap-
plies, since, at the present epoch, γ ≈ 9.1 × 106. Hence,
the tachyonic energy density is peaked in the microwave
range, at νpeak

t ≈ 90.6 GHz (0.33 cm or 3.7 × 10−4 eV),
rather close to the peak of the photon density at νpeak

ph ≈
160 GHz, (0.19 cm or 6.6× 10−4 eV).

Next we turn to atoms in equilibrium with a mixture
of photon and tachyon black-body radiation, and study
the ratio of photon and tachyon transition rates [36]. The
derivation of tachyonic transition rates is quite analogous
to photonic ones, by standard equilibrium arguments not
repeated here, but we sketch how this ratio relates to the
Einstein coefficients and the photonic and tachyonic spec-
tral energy densities. The quotient of the dipole matrix
elements of electric and tachyonic charge and the absorp-
tion coefficients read

|Dq
mn|2

|De
mn|2

=
β̂

α̂
, Be,q

mn =
16
3
π4

h2
|De,q

mn|2. (4.4)

The coefficients for spontaneous emission connect to the
B-coefficients as

Ae
mn = 4

hν3

c3
Be
mn, Aq

mn = 4
hν2

c3

√
ν2 +m2

t c
4/h2Bq

mn,

(4.5)

where ν denotes the transition frequency. The spectral
energy densities of photon and tachyon radiation relate as

ρtach(ν) =

√
ν2 +m2

t c
4/h2

ν
ρph(ν). (4.6)

The ratio of tachyon and photon transition rates is
the same for absorptive, stimulated, and spontaneous
transitions,

Rtach
mn

Rph
mn

≤ Bq
mn

Be
mn

ρtach(ν)
ρph(ν)

=
Aq
mn

Ae
mn

=
β̂

α̂

√
(hν)2 +m2

t c
4

hν
·

(4.7)

The dipole approximation is valid for radiation of wave-
lengths large compared to the size of the atom, so that
the wave can be regarded as spatially constant. This is
not the case for tachyon radiation, see after (4.1), and
averaging effects lead to a reduction of Rtach, so that
the estimate (4.7) for Rtach/Rph is only an upper bound.
We find Rtach/Rph < 3.0 × 10−9 for the Ly-α lines of
hydrogen (10.2 eV), based on mt ≈ 2.15 keV/c2 and
β̂/α̂ ≈ 1.4 × 10−11. In heavy ions, it is even more un-
likely that atomic transitions are effected by tachyon ra-
diation; Rtach/Rph < 1.4× 10−11 for the Ly-α1 transition
(0.23 MeV) in hydrogenic uranium.

We give some estimates on the speed of tachyons emit-
ted in atomic transitions. Tachyonic frequency and veloc-
ity relate via hν = mtc

2a−1(τ)(v2/c2−1)−1/2, because the
classical action appears as the phase of the spectral waves,
see (2.2) and after (2.3). As the tachyon velocity is (an in-
tegration) constant, we recover the same redshift scaling
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as for photons. (The tachyon mass of 2.15 keV refers of
course to the present epoch, a(τ0) = 1.) If a tachyon is
generated by a Ly-α transition in a heavy hydrogenic ion,
then its velocity is rather close to the speed of light. As
for hydrogen transitions, we may use v ∼ 2.15 keVc/(hν),
so that v(Ly-α) ∼ 210c; a 3p3/2−4d5/2 transition effected
by tachyon radiation results in v(0.66 eV) ∼ 3.2 × 103c,
and the hydrogen ground state hyperfine interval yields a
staggering v ∼ 3.6× 108c.

The estimate (4.7) also applies to classical dipole radi-
ation, to the radiant power absorbed by an antenna. For
a given frequency, and mtc

2/(hν)� 1,

Ptach

Pph
<
β̂

α̂

mtc
2

hν
, (4.8)

so that Ptach/Pph(νpeak
ph ) < 4.6 × 10−5 at the maximum

of the photon energy density at 2.73 K. The chances to
detect the cosmic tachyon radiation, i.e., to observe the
limit (4.2) instead of the Rayleigh-Jeans law, improve with
increasing wavelength, e.g., Ptach/Pph (7.3 MHz)< 1. The
Planckian shape of the cosmic black-body radiation has
not been tested for wavelengths above 50 cm, cf. [12].

As for the thermodynamic variables, their low temper-
ature limits can readily be calculated [36]. The partition
function reads

logZ = −2V
h3

∫
|p|>mtc

d3p log
[
1− exp(−βhν(p))

]
,

(4.9)

and we obtain, for mtc
2/(kT )� 1,

U ∼ 16πζ(3)
mtk

3

ch3
V T 3, N ∼ 4

3
π3mtk

2

ch3
V T 2,

PV = −F ∼ 1
2
U ∼ 6ζ(3)

π2
NkT,

S ∼ 1
2
cV ∼

3
2
U

T
∼ 18ζ(3)

π2
Nk, (4.10)

with ζ(3) ≈ 1.202. Entropy and the thermal equation of
state are, in the indicated leading order of the asymp-
totic expansion, independent of the tachyon mass, but
not so the caloric equation. One readily calculates the ra-
tio of photon and tachyon density as well as the ratio of
the corresponding energy densities in the low temperature
regime,

Ntach

Nph
∼ π2

12ζ(3)
mtc

2

kT
,
Utach

Uph
∼ 30ζ(3)

π4

mtc
2

kT
· (4.11)

We find, with a background temperature of 2.73 K,
Ntach/Nph ≈ 6.2 × 106 and Utach/Uph ≈ 3.4 × 106, but
as we have seen, the high tachyon density cannot com-
pensate the very small ratio of tachyonic and electric fine
structure constants, at least not in the microwave regime.

5 Conclusion

The cosmology advanced here is at least in two ways devi-
ating from the Einsteinian approach based on the postu-

lates of homogeneity and isotropy and the relativity prin-
ciple. Firstly, the cosmic evolution mentioned in the intro-
duction deforms the open 3-space globally, without chang-
ing its constant curvature. This evolution is topologically
induced; a multiply connected 3-space is a prerequisite
for it. Homogeneity and isotropy are implemented only to
the extend that the 3-space retains its constant curvature.
(The curvature radius scales, as in traditional Robertson-
Walker cosmology, with the expansion factor.) Locally, the
3-space still admits a six-dimensional continuous symme-
try group, but globally homogeneity and isotropy are de-
stroyed by the multiple connectivity. This is also evident
from the qualitative behavior of world-lines, in particular
from the emergence of a domain of chaoticity in the open
3-space.

The second difference to Einsteinian as well as New-
tonian cosmology is the space-time view itself. Relativ-
ity principles asserting the physical equivalence of ob-
servations of galactic observers and observers uniformly
moving in the galaxy grid are not compatible with the
causality principle, if events are connected by superlumi-
nal signals [9]. The space concept of Newtonian mechanics
is that of the void, generated by rectangular coordinate
axes in our imagination. In the theory of special relativity
this does not change at all, and even in general relativity
this space conception prevails by the possibility to intro-
duce locally geodesic coordinates. The Euclidean metric is
replaced by a more complicated one, but space remains a
geometric construct of our imagination, the void labeled
by coordinates and quantified by a metric, also see [1,
41] for discussions on the reality of the space expansion.
In this context relativity principles asserting the equiv-
alence of observations made by different observers uni-
formly moving in the void are indeed natural. However, a
purely geometric space conception and the relativity prin-
ciples associated with it are in my opinion inappropriate in
cosmology. Cosmic space is generated by the galaxy grid,
which provides a natural reference frame, practically re-
alized by the Planckian microwave background. The con-
sequences of this frame have never been seriously faced,
though it is widely acknowledged that comoving coordi-
nates define a distinguished cosmic time. The state of rest
can be defined with respect to the galaxy background,
and uniform motion and rest become easily distinguish-
able states. Whether an observer is at rest or in uniform
motion with respect to the microwave background, this
can really be unambiguously decided, quantitatively, by
measuring the dipole anisotropy of the background tem-
perature, caused by a Doppler shift. If tachyons are defined
with respect to this comoving frame, as we have done in
this paper, a causality problem does not even arise, since
the time order of events is unambiguously defined by this
frame. All uniformly moving observers can relate their
proper time to cosmic time, by determining their motion
relative to the background radiation, and can arrive so at
the same conclusions on cause and effect. To figure out the
causality of an experiment involving tachyons, one has to
connect the lab to the rest of the universe and to determine
its motion relative to the galaxy background. This is quite
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possible today, thanks to the microwave radiation; the
solar barycenter is moving with 370 km/s, cf. [12], fast
enough to even neglect the relative motions of the Earth
in a first approximation [57].

In this paper a classical field theory for tachyons is
studied, complemented by a semiclassical attachment of
frequency to the tachyonic rays. The assumed validity of
the de Broglie relation for tachyons is supported by the
fact that the classical action appears as the phase of the
freely propagating spectral waves. The most promising ap-
proach to second quantization outside the light cone is still
that of Feinberg [27,29], based on an incomplete set of
eigenmodes (and a scalar field theory); the truncation of
the momentum integration in the partition function (4.9)
is in fact borrowed from [27]. Feinberg’s controversial non-
invariant vacuum is not an obstacle in a cosmological set-
ting, if one defines it with respect to the comoving frame,
and then his quantization is in my opinion consistent, at
least as far as the free field is concerned. (Locally, the cos-
mic reference frame as defined by the galaxy grid is mani-
fest by a permeability tensor [40,41].) However, before one
starts to endeavor on a systematic quantization procedure
of the Proca field with negative mass square, one needs a
good command of the classical theory, of wave propagation
and generation outside the light cone, and of interactions
with subluminal currents. One would also have to think
over what is to be explained by tachyonic quantum effects.
If one contemplates on tachyons, one has to decide where
to search for them, where could a tachyon field manifest?
Does it affect planetary perihelion shifts, or nuclear in-
teractions? The best chances today to find evidence for a
tachyon field are presumably high-precision experiments
in atomic physics, and that is the reason to consider the
tachyon potential as a perturbation of the Coulomb po-
tential. The coupling strength of the tachyon potential is
by eleven orders of magnitude smaller than the coupling
strength of the Coulomb potential; the classical tachyon
field gives only a very tiny contribution to the Lamb shift,
a small fraction of the QED contribution, and tachyonic
quantum fluctuations may be much harder to detect than
semiclassical corrections to energy levels. Rydberg transi-
tions give rise to very speedy tachyons; transitions induced
by tachyon radiation as well as the tachyonic analog to the
photoelectric effect in Rydberg atoms will be discussed
elsewhere.
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Appendix A: Ground state eigenfunction
in the tachyon potential

We calculate the ground state eigenfunction of (3.1, 3.2) in
linear order in λ := β/α. The setting is as in (3.1–3.5). We
use a perturbative method frequently applied to ground
states [58], which is much simpler than Schrödinger per-
turbation theory, as it does not involve eigenfunction ex-
pansions. In (3.2) we substitute E = E0 + λE1 + O(λ2)
and ul,E(r) = u0(r) + λu1(r) + O(λ2). A formal power
series expansion of (3.2) in λ gives for the zeroth and first
order (

−d2/dr2 + h(r;n, l)
)
u0 = 0,

h(r;n, l) :=
1

a2n2
− 2
ar

+
l(l + 1)
r2

, (A.1)

(
−d2/dr2 + h(r;n, l)

)
u1 =

2
a

(
E1

α
− 1
r

cos(µr)
)
u0,

(A.2)

respectively. We define a scalar product 〈u, v〉 :=∫∞
0 u(r)v̄(r)dr, and consider solutions of (A.1, A.2) reg-

ular at r = 0, u(0) = 0, and exponentially decaying for
large r. By applying partial integration twice, we find

〈u0, (−d2/dr2 + h(r;n, l))u1〉 = 0. (A.3)

In the following we focus on the ground state, n = 1,
l = 0. The normalized solution u0 of (A.1) is given in (3.5).
The first order correction E1 to the ground state energy,
as given in (3.3, 3.5), readily follows from (A.2, A.3).
Equation (A.2) may thus be written as

u′′1(r) −
(

1
a2
− 2
ar

)
u1(r) = g(r),

g(r) :=
4e−r/a

a5/2

(
cos(µr) − (1− a2µ2/4)

(1 + a2µ2/4)2

r

a

)
. (A.4)

u0 in (3.5) is also a solution of the homogeneous equation
in (A.4). A second fundamental solution is ϕ0 = −er/a +
2a−1re−r/aEi(2r/a), which diverges exponentially. Here,
Ei(2r/a) is just meant as an antiderivative of r−1e2r/a.
The Wronskian is u0ϕ

′
0 − u′0ϕ0 = 2a−3/2, and u1 =(

a3/2/2
)(
ϕ0

∫
u0g dr−u0

∫
ϕ0g dr

)
solves (A.4). Integra-

tions over Ei(2r/a) can be avoided by partial integration,
and the integration constants can be chosen in a way
that Ei(2r/a) drops out; the remaining integrations are
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elementary. A solution of (A.4) decaying at infinity is

u1(r) =
2e−r/a

a1/2(1 + a2µ2/4)2

[(
1− a2µ2/4

)( r2

a2
− r

a

+
r

a
log(µr) − 1

2
+

1
2

cos(µr) − r

a
ci(µr)

)
− µa

(
1
2

sin(µr)− r

a
si(µr)

)]
,

si(µr) : = −π
2

+
∫ r

0

sin(µr)
r

dr,

ci(µr) : = γ + log(µr) +
∫ r

0

cos(µr)− 1
r

dr, (A.5)

u1(r → 0) =
−2r

a3/2(1 + a2µ2/4)2

(
(1− a2µ2/4)(1 + γ)

+
π

2
aµ+

1
2
a2µ2

)
+O(r2). (A.6)

We may still add a constant multiple of u0 to u1, and
choose

û1(r) := u1(r) − 〈u1, u0〉u0(r), (A.7)

so that 〈û1, u0〉 = 0. Clearly, û1 is the only square in-
tegrable solution of (A.4) orthogonal to u0. The scalar
product of u1 (defined by (A.5)) and u0 is

〈u1, u0〉 =
1(

1 + a2µ2/4
)2

[
− 1 + (1− a2µ2/4)

×
(

3
2
− γ +

1
2

log(1 + a2µ2/4)
)

− aµ arctan
2
aµ

+
a2µ2

1 + a2µ2/4

]
, (A.8)

0 < arctan < π/2; the integrals needed to calculate (A.8)
are all standard. We obtain, for r → 0 and with µ̂ := aµ,
cf. (3.8),

û1(r)
r

= − 1

a3/2
(
1 + µ̂2/4

)2(3 +
(
1− µ̂2/4

)
log
(
1 + µ̂2/4

)
+ 2µ̂ arctan

µ̂

2
− 1

4
µ̂2 +

2µ̂2

1 + µ̂2/4

)
+O(r) (A.9)

= − 3
a3/2

(
1 +

1
2
µ̂2 +O(µ̂4)

)
+O(r). (A.10)

The ground state wave function of (3.1) can be assem-
bled as

Ψ(r) =
1

2
√
π

u0(r)
r

(
1 + λ

û1(r)
u0(r)

+O(λ2)
)
. (A.11)

Because of 〈û1, u0〉 = 0, we find
∫

R3 |Ψ(r)|2dx = 1+O(λ2);
the wave function is normalized in linear order. For the cal-
culation of the ground state hyperfine interval in Section 3,
cf. (3.26), we need

|Ψ(0)|2 =
1
πa3

(
1 + λa3/2 û1(r)

r

∣∣∣
r=0

+O(λ2)
)
, (A.12)

with û1(r)/r as in (A.9).
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