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Tachyonic Cherenkov radiation from inertial relativistic electrons in the Jovian radiation belts is studied.
The tachyonic modes are coupled to a frequency-dependent permeability tensor and admit a negative
mass-square, rendering them superluminal and dispersive. The superluminal radiation field can be cast
into Maxwellian form, using 3D field strengths and inductions, and the spectral densities of tachyonic
Cherenkov radiation are derived. The negative mass-square gives rise to a longitudinal flux component.
A spectral fit to Jupiter’s radio spectrum, inferred from ground-based observations and the Cassini 2001
fly-by, is performed with tachyonic Cherenkov flux densities averaged over a thermal electron population.
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1. Introduction

During the Cassini Jupiter fly-by in January 2001, an in situ
measurement of the Jovian radio emission was performed, re-
sulting in an unexpectedly low flux density of 0.44 ± 0.15 Jy
at 13.8 GHz [1], as compared to ground-based observations at
8.6 GHz [2], which produced an averaged flux of 2.3 ± 0.6 Jy.
This sudden decline is hard to explain with magnetospheric ultra-
relativistic synchrotron radiation models. Here, we investigate the
presently available radio spectrum ranging from 74 MHz up to
the Cassini flux at 13.8 GHz. We perform a spectral fit to the Jo-
vian radio flux with a tachyonic Cherenkov density [3–6] produced
by mildly relativistic thermal electrons in the radiation belts. The
superluminal radiation field (Proca field) satisfies Maxwell’s equa-
tions with negative mass-square [7]. On that basis, we derive the
tachyonic Cherenkov flux generated by inertial charges propagating
in a dispersive spacetime.

In Section 2, we discuss Proca fields with negative mass-square
and frequency-dependent permeabilities. We outline the tachyonic
Maxwell equations in terms of 3D field strengths and inductions
and develop the 4D Lagrange formalism using dispersive perme-
ability tensors. We obtain field equations which have a manifestly
covariant appearance, even though the permeability tensors are a
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manifestation of the absolute spacetime required for causal super-
luminal signal transfer [8–10].

In Section 3, we analyze asymptotic tachyonic radiation fields
generated by a classical subluminal current density, and decom-
pose them into transversal and longitudinal field components. In
Section 4, we derive the tachyonic Cherenkov flux densities of a
relativistic charge in uniform motion. A longitudinal radiation com-
ponent emerges whose intensity scales with the negative mass-
square of the radiation field. As in the case of electromagnetic
Cherenkov radiation, the mass of the radiating particle does not
enter in the tachyonic Cherenkov densities. This gives credence to
the view [3], that Cherenkov radiation is not so much radiation by
a charge passing through a medium, but rather radiation by the
medium itself, excited by the field of the inertial charge.

In Section 5, we average the differential tachyonic Cherenkov
flux over relativistic electron distributions (thermal Maxwell–
Boltzmann and nonthermal power-law distributions). In Sec-
tion 6.1, we discuss spectral fitting with Cherenkov flux densities,
adapted to Jupiter’s radio band. In Section 6.2, a spectral fit to
the Jovian radio emission is performed. The low flux density at
13.8 GHz measured by the Cassini spacecraft can well be ex-
plained by tachyonic Cherenkov emission from thermal electrons
in Jupiter’s radiation belts, the Cassini data point being located in
the exponentially decaying spectral tail. In Section 7, we present
our conclusions.
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2. Tachyonic Proca–Maxwell fields: manifestly covariant field
equations in a permeable spacetime

We start with some conventions regarding the Fourier time
transform. The vector potential Aμ = (A0,A) transforms as
Âμ(x,ω) = ∫ ∞

−∞ Aμ(x, t)eiωt dt , and the same holds for the field

strengths, inductions and the current. Since Aμ is real, Â∗
μ(x,ω) =

Âμ(x,−ω). The homogeneous Maxwell equations in space–frequenc
representation read rot Ê − iωB̂ = 0, div B̂ = 0. The field strengths
Ê(x,ω) and B̂(x,ω) are related to the vector potential by Ê =
iωÂ + ∇ Â0, B̂ = rot Â. The constitutive equations defining the in-
ductions D̂ and Ĥ and the inductive potential Ĉμ = (Ĉ0, Ĉ) read
[7,11]

D̂(x,ω) = ε(ω)Ê(x,ω), B̂(x,ω) = μ(ω)Ĥ(x,ω),

Â(x,ω) = μ0(ω)Ĉ(x,ω), Ĉ0(x,ω) = ε0(ω) Â0(x,ω). (2.1)

The permeabilities ε(ω), μ(ω), μ0(ω) and ε0(ω) are independent
of the space variable, real and symmetric ε(ω) = ε(−ω). The in-
homogeneous field equations coupled to a current ĵμΩ = (ρ̂Ω, ĵΩ)

(which will be defined in (2.5)) read

rot Ĥ + iωD̂ = ĵΩ + m2
t (ω)Ĉ, div D̂ = ρ̂Ω − m2

t (ω)Ĉ0. (2.2)

m2
t (ω) is the negative tachyonic mass-square (m2

t > 0 in our sign
convention), which can be frequency-dependent like the perme-
abilities, m2

t (ω) = m2
t (−ω). We take the divergence of the first

equation in (2.2) and substitute the second, to obtain the Lorentz
condition div Ĉ + iωĈ0 = 0, subject to current conservation iωρ̂Ω −
div ĵΩ = 0. The corresponding Fourier representation of the Poynt-
ing flux vector [11] is Ŝ = Ê × Ĥ∗ + m2

t Â0Ĉ∗ + c.c.
To write the Maxwell equations manifestly covariantly in

Fourier space, we start with the field tensor Fμν(x, t) = Aν,μ −
Aμ,ν . We use the convention that time differentiation in Fourier
space means to multiply with a factor −iω, e.g. Âμ,0(x,ω) =
−iω Âμ . For conjugated fields, Â∗

μ,0 = iω Â∗
μ . Thus, F̂μν(x,ω) =

Âν,μ − Âμ,ν and ĵμΩ,μ = 0, which actually means ĵm
Ω,m − iω ĵ0

Ω = 0.

The 3D field strengths are Êk = F̂k0 and B̂k = εki j F̂ i j/2 = εki j Â j,i ,
and inversely F̂ i j = εi jk B̂k , where εki j is the Levi-Civita 3-tensor.
The manifestly covariant homogeneous field equations read
εκλμν F̂μν,λ = 0, where εκλμν is the totally antisymmetric 4-tensor.

The permeabilities (ε0(ω),μ0(ω)) and (ε(ω),μ(ω)) in (2.1) de-
fine isotropic real and symmetric permeability tensors gμν

A (ω) and
gμν

F (ω) [7],

g00
A = −ε0, gij

A = δi j

μ0
,

g00
F = −μ1/2ε, gij

F = δi j

μ1/2
, (2.3)

with zero flanks g0i
A,F = 0 and gμν

A,F (ω) = gμν
A,F (−ω). Greek in-

dices are raised and lowered with the Minkowski metric ημν =
diag(−1,1,1,1). We may then write the inductions (2.1) mani-
festly covariantly as Ĉμ = gμν

A Âν , Ĥαβ = gαμ
F gβν

F F̂μν , so that D̂l =
Ĥ0l = ε Êl and Ĥi = εikl Ĥkl/2 = B̂ i/μ, and inversely Ĥmn = Ĥ jε

jmn .
Also, Ĥkl = F̂kl/μ and Ĥ0l = −ε F̂0l .

The action functional is S = (2π)−1
∫

L̂(x,ω)dx dω, defined by
the Lagrangian

L̂ = −1

4
F̂αβ gαμ

F gβν
F F̂μν + 1

2
m2

t Âμgμν
A Âν + Âμgμν

J ĵν

= −1
F̂μν Ĥμν + 1

m2
t ÂμĈμ + Âμ ĵμΩ. (2.4)
4 2
The coupling of the wave modes to an external current ĵν(x,ω)

is effected by a permeability tensor gμν
J (ω),

g00
J = −Ω0(ω), gmn

J = δmn

Ω(ω)
, gk0

J = 0, (2.5)

with the same properties as the tensors gμν
A,F in (2.3). In the

field equations (2.2), we use the ‘dressed’ current ĵμΩ = gμν
J ĵν =

(ρ̂Ω, ĵΩ). Euler variation of the action gives the manifestly co-
variant field equations Ĥμν

,ν − m2
t Ĉμ = ĵμΩ in space–frequency

(x,ω) representation, equivalent to (2.2). (Ĥm0
,0(x,ω) = −iωĤm0,

as defined above.) If the current ĵμΩ is conserved, ĵμΩ,μ = 0, we

find the Lorentz condition Ĉμ
,μ = 0. The permeability tensor

(2.5) amounts to a frequency-dependent coupling constant in La-
grangian (2.4) if Ω0(ω) = 1/Ω(ω), which we assume in the fol-
lowing, ĵμΩ = ĵμ/Ω(ω). Thus, if the external current is conserved,

ĵm
,m − iω ĵ0 = 0, this also holds for the dressed current ĵμΩ . In

fact, Ω(ω) can be scaled into the permeabilities (2.1), ε → Ωε,
μ → μ/Ω , and analogously for (ε0,μ0), cf. (2.2).

3. Asymptotic radiation fields: time-averaged transversal and
longitudinal energy flux

The tachyonic Maxwell equations (stated in (2.2) and after (2.5),
with permeability tensors in (2.3) and (2.5)) are solved by the
transversal and longitudinal asymptotic vector potentials [12,13]

ÂT,L(x,ω) ∼ 1

Ω

λT,L

4πr
eikT,Lr

∫
e−ikT,Lnx′

ĵT,L(x′,ω
)

dx′. (3.1)

Here, we substitute the transversal/longitudinal current compo-
nents, defined with the radial unit wave vector n = x/r: nĵT =
0 and n × ĵL = 0. We also note div ÂT = O(1/r2) and rot ÂL =
O(1/r2). λT,L in (3.1) stands for λT = μ, λL = ε0μ0/ε, and the
wave numbers kT,L are defined by the dispersion relations kT,L =
sign(ω)κT,L(ω), where [14]

κ2
T = εμω2 + m2

t
μ

μ0
, κ2

L = ε0μ0ω
2 + m2

t
ε0

ε
, (3.2)

and k2
L = k2

Tε0μ0/(εμ). It is convenient to define the current trans-
form [15]

Ĵ(x,ω,kT,L) =
∫

dx′ ĵ
(
x′,ω

)
exp

(−ikT,L(ω)nx′), (3.3)

whose transversal and longitudinal projections read

ĴT(x,ω) = Ĵ(x,ω,kT) − n
(
nĴ(x,ω,kT)

)
,

ĴL(x,ω) = n
(
nĴ(x,ω,kL)

)
, (3.4)

so that the integral in (3.1) can be replaced by ĴT,L(x,ω).
The transversal field strengths read ÊT(x,ω) = iωÂT, B̂T =

rot ÂT, ÂT
0 = 0, and the longitudinal ones are ÊL ∼ m2

t ÂL/(iωμ0ε),

B̂L = 0 and ÂL
0 = −div ÂL/(iωε0μ0). The polarization components

ŜT,L(x,ω) of the energy flux vector can thus be assembled as, cf.
after (2.2),

ŜT ∼ ÊT × Ĥ∗ + c.c. ∼ 2μωkT

(4πrΩ)2
n
(

ĴT(x,ω)ĴT∗(x,ω)
)
,

ŜL ∼ −m2
t Â0ĈL∗ + c.c. ∼ 2m2

t

(4πrΩ)2

ε0

ε2

kL

ω
n
(

ĴL(x,ω)ĴL∗(x,ω)
)
.

(3.5)

We perform a time average (also see (4.1) below),
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〈
ST〉 = 1

T

+T /2∫
−T /2

ET(x, t) × H(x, t)dt,

〈
SL〉 = −m2

t

T

+T /2∫
−T /2

A0(x, t)CL(x, t)dt, (3.6)

to find

〈
ST〉 ∼ 1

2π T

n

(4πr)2

+∞∫
−∞

μωkT

Ω2

(
ĴT(x,ω)ĴT∗(x,ω)

)
dω,

〈
SL〉 ∼ m2

t

2π T

n

(4πr)2

+∞∫
−∞

ε0kL

ε2Ω2ω

(
ĴL(x,ω)ĴL∗(x,ω)

)
dω, (3.7)

from which the transversal and longitudinal Cherenkov flux densi-
ties can be extracted, cf. Section 4.

4. Superluminal radiation by an inertial charge in a dispersive
spacetime

We consider a classical point charge q in uniform motion
x0(t) = υt , with subluminal speed υ < 1. The charge and current
densities are ρ = qδ(x − υt) and j(x, t) = qυδ(x − υt). We use the
Heaviside–Lorentz system, so that αe = e2/(4π h̄c) ≈ 1/137 and
αq = q2/(4π h̄c) are the electric and tachyonic fine-structure con-
stants. The current transform (3.3) reads

Ĵ(x,ω,kT,L; T ) = qυ

+T /2∫
−T /2

exp
[−i

(
kT,L(ω)nυ − ω

)
t
]

dt, (4.1)

where the time cutoff T → ∞ has been introduced as a reg-
ularization. The time integration is performed by means of the
limit definition δ(1),T (ω) = (2π)−1

∫ +T /2
−T /2 eiωt dt of the Dirac func-

tion. A second limit definition, δ(2),T (ω) = (2π/T )δ2
(1),T (ω), is in-

voked in (4.2) to calculate the time-averaged flux vectors. We write
Ĵ(x,ω,kT,L; T ) = 2πqυδ(1),T (ω − kT,L(ω)nυ) and use υ as polar
axis, nυ = υ cos θ , to find, cf. (3.7),

〈
ST〉 ∼ q2υ2n

(4πr)2
sin2 θ

+∞∫
−∞

μωkT

Ω2
δ(2),T

(
kT(ω)υ cos θ − ω

)
dω,

〈
SL〉 ∼ q2υ2m2

t n

(4πr)2
cos2 θ

+∞∫
−∞

ε0kL

ωε2Ω2
δ(2),T

(
kL(ω)υ cos θ − ω

)
dω.

(4.2)

Performing the limit T → ∞, we can replace δ(2),T by the ordinary
delta function.

The radiant transversal/longitudinal power is obtained by inte-
grating the Poynting vectors (4.2) over a sphere of radius r → ∞,
P T,L = r2

∫ 〈ST,L〉n sin θ dθ dϕ . By interchanging the dθ and dω in-
tegrations, we find

P T =
ωT,max∫

0

pT(ω)dω, P L =
ωL,max∫

0

pL(ω)dω, (4.3)

where pT,L(ω) are the tachyonic Cherenkov densities for transver-
sal/longitudinal radiation,
pT(ω) = q2υ

4π

μ(ω)ω

Ω2(ω)

(
1 − ω2

k2
T(ω)υ2

)
,

pL(ω) = q2

4πυ

m2
t (ω)ε0(ω)

ε2(ω)Ω2(ω)

ω

k2
L(ω)

. (4.4)

The integration range in (4.3) is actually over positive ω inter-
vals in which ω/(kT,L(ω)υ) � 1, cf. (3.2). From now on, we will
use constant (i.e. frequency-independent) permeabilities (ε,μ) and
(ε0,μ0) as well as a constant tachyonic mass-square m2

t . In this
case, the integration range in (4.3) is defined by cutoff frequencies
ωT,L,max obtained as the solutions of kT,L(ω)υ = ω, respectively.

In the tachyonic spectral densities (4.4), we substitute the wave
numbers (3.2), and parametrize the particle velocity with the
Lorentz factor, υ = √

γ 2 − 1/γ :

pT(ω,γ ) = q2

4π

m2
t μ

Ω2

ω

εμ0ω2 + m2
t

(
1 − 1

ηT(γ )

ω2

m2
t

)√
γ 2 − 1

γ
,

pL(ω,γ ) = q2

4π

m2
t

εΩ2

ω

εμ0ω2 + m2
t

γ√
γ 2 − 1

, (4.5)

where we use the shortcut

ηT(γ ) = 1

εμ0

γ 2 − 1

1 + (1/(εμ) − 1)γ 2
. (4.6)

We also define ηL(γ ) analogous to ηT(γ ) with the product εμ
in (4.6) replaced by ε0μ0. In the following, we restrict to per-
meabilities satisfying εμ � 1 and ε0μ0 � 1, since the spectral
averaging carried out in the next section leads to exponentially
decaying spectral densities only in this case. Subject to these con-
straints, the functions ηT,L(γ ) are positive, irrespectively of the
Lorentz factor γ � 1, and related to the cutoff frequencies in (4.3)
by ωT,L,max(γ ) = mt

√
ηT,L.

5. Tachyonic Cherenkov densities averaged with relativistic
electron distributions

We rescale the frequency in the radiation densities (4.5), ω̂ =√
εμ0ω/mt,

pT(ω,γ ) = μmt√
εμ0

αq(ω)ω̂

ω̂2 + 1

×
[(

1 −
(

1

εμ
− 1

)
ω̂2

)
γ 2 − (

ω̂2 + 1
)]

× 1

γ
√

γ 2 − 1
,

pL(ω,γ ) = mt

ε
√

εμ0

αq(ω)ω̂

ω̂2 + 1

γ√
γ 2 − 1

, (5.1)

where we have introduced the frequency-dependent tachyonic
fine-structure constant αq(ω) = q2/(4πΩ2(ω)). The scale factor
Ω2(ω), cf. after (2.5), is chosen as

Ω2(ω) =
(

ω̂2

ω̂2 + 1

)σ

, (5.2)

where the exponent σ is to be determined from an empiri-
cal spectral fit. We note Ω(ω) → 1 for ω → ∞ as well as
mt → 0, and Ω(ω → 0) ∼ ω̂σ . The permeabilities ε,μ,ε0,μ0
are positive and constant, satisfying εμ � 1 and ε0μ0 � 1, cf.
after (4.6). The transversal/longitudinal spectral range is 0 �
ω � ωT,L,max(γ ), with ωT,L,max = mt

√
ηT,L(γ ). The cutoff factors

ηT,L(γ ) in (4.6) are monotonically increasing, from zero at γ = 1
to the maximum ηT(∞) = [εμ0(1/(εμ) − 1)]−1 and ηL(∞) =
[εμ0(1/(ε0μ0) − 1)]−1, respectively.
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We average the radiation densities (5.1) with an electronic
power-law distribution [16–19],

dρα,β(γ ) = Aα,βγ −α−1e−βγ
√

γ 2 − 1 dγ , (5.3)

where the dimensionless normalization constant Aα,β is related to
the electronic number count Ne by

Ne = Aα,β Kα,β, Kα,β =
∞∫

1

γ −α−1e−βγ
√

γ 2 − 1 dγ . (5.4)

The exponential cutoff β = me/(kBT ) determines the electron tem-
perature, T [K] ≈ 5.93 × 109/β . kB is the Boltzmann constant and
me the electron mass. A thermal Maxwell–Boltzmann distribution
requires the electron index α = −2.

The spectral average of the transversal radiation densities in
(5.1) is carried out as

〈
pT(ω)

〉
α,β

=
∞∫

1

pT(ω,γ )θ
(
ωT,max(γ ) − ω

)
dρα,β(γ ), (5.5)

where θ is the Heaviside step function. The same applies to the
longitudinal density, if we replace T → L and εμ → ε0μ0. To eval-
uate integral (5.5), we solve the inequality ω < ωT,max, ωT,max =
mt

√
ηT(γ ), for γ , cf. (4.6):

γ 2 > γ 2
T,min(ω) = 1 + ω̂2

1 + ω̂2(1 − 1/(εμ))
, (5.6)

which is valid if the denominator is positive. As pointed out af-
ter (5.2), only frequencies in the range 0 < ω < ωT,max(∞) can be
radiated, where ωT,max(∞) = mt

√
ηT(∞). In this frequency range,

the denominator in (5.6) is positive and γT,min(ω) is monotonically
increasing, reaching infinity at ωT,max(∞). Thus, for a frequency
in the range 0 < ω < ωT,max(∞) to be radiated, this requires the
electronic Lorentz factor γ to exceed γT,min(ω). This holds true
for longitudinal radiation as well, if we perform the substitutions
T → L and εμ → ε0μ0, which also define γL,min(ω) via (5.6).

With these prerequisites, the average (5.5) can be reduced to
the spectral functions [20]

BT,L(ω,γ1) =
∞∫

γ1

pT,L(ω,γ )dρα,β(γ ), (5.7)

so that, cf. (5.6),
〈
pT(ω)

〉
α,β

= θ
(
ωT,max(∞) − ω

)
BT(ω,γT,min(ω)

)
. (5.8)

In the Heaviside function θ , it is convenient to rescale the argu-
ment, writing θ(ω̂T,max(∞) − ω̂), where ω̂T,max(∞) = (1/(εμ) −
1)−1/2. The longitudinal average 〈pL(ω)〉α,β is obtained by the sub-
stitutions T → L and εμ → ε0μ0 in (5.6) and (5.8).

The spectral functions BT,L(ω,γ1) in (5.7) admit integration in
terms of incomplete gamma functions,

BT(ω,γ1) = Aα,β

μmt√
εμ0

αqω̂

ω̂2 + 1

1

β2γ α+1
1

×
{[

α(α + 1)

(
1 −

(
1

εμ
− 1

)
ω̂2

)
− β2(ω̂2 + 1

)]

× (βγ1)
α+1Γ (−1 − α,βγ1)

+
(

1 −
(

1

εμ
− 1

)
ω̂2

)
e−βγ1(βγ1 − α)

}
, (5.9)

where αq(ω) is the tachyonic fine-structure constant defined be-
fore (5.2). The longitudinal spectral function reads
BL(ω,γ1) = Aα,β

mt

ε
√

εμ0

αqω̂

ω̂2 + 1

1

β2γ α+1
1

× [
α(α + 1)(βγ1)

α+1Γ (−α − 1, βγ1)

+ e−βγ1(βγ1 − α)
]
. (5.10)

We note that Γ is elementary for Maxwell–Boltzmann aver-
ages, α = −2, Γ (1, βγ1) = e−βγ1 , and it decays exponentially
for βγ1 � 1, Γ (−α − 1, βγ1) ∼ (βγ1)

−α−2e−βγ1 . Accordingly,
BT(ω,γT,min(ω)) decays exponentially as well, since γT,min(ω) di-
verges for ω → ωT,max(∞), cf. (5.6), and the same holds true for
BL(ω,γL,min(ω)) and ω → ωL,max(∞). In the low-frequency limit,
ω̂ → 0, we find BT,L(ω,γT,L,min(ω)) ∝ ω̂1−2σ , cf. (5.2).

6. Tachyonic spectral fit to Jupiter’s radio emission

6.1. Superluminal Cherenkov flux in the radio band

We restore the units h̄ = c = 1 and use eV units for the
tachyon mass, so that mt stands for mtc2[eV]. As for the radi-
ated frequencies, we put ω = h[eV s]ν[Hz], where h[eV s] ≈ 2π ×
6.582×10−16. The energy-dependent tachyonic fine-structure con-
stant is dimensionless, αq(ω) = αt/Ω

2(ω), cf. (5.2); the propor-
tionality factor αt = q2/(4π h̄c) is the tachyonic counterpart to the
electric fine-structure constant e2/(4π h̄c), αq(ω → ∞) = αt. The
permeabilities (2.1) and the temperature parameter β are dimen-
sionless. The spectral functions BT,L in (5.9) and (5.10) and the
averaged densities 〈pT,L(ω)〉α,β in (5.8) are in eV units accord-
ingly. The power transversally and longitudinally radiated is thus
P T,L[eV/s] = ∫ 〈pT,L(ω)〉α,β dν , where we substitute mt → mtc2[eV]
and ω → h[eV s]ν in the integrand. The transversal/longitudinal
flux densities read

F T,L
ν

[
eV/cm2] = 1

4πd2[cm]
dP T,L

dν

[
eV s−1 Hz−1]

= 〈pT,L(ω)〉α,β [eV]
4πd2[cm] , (6.1)

where d[cm] is the distance to the radiating source. The total un-
polarized flux density is F T+L

ν = F T
ν + F L

ν . Jupiter’s standard geo-
centric distance is d ≈ 4.04 AU ≈ 6.04 × 1013 cm [1,2,21]. As we
have already expressed 〈pT,L(ω)〉α,β in terms of the rescaled fre-
quency ω̂ = √

εμ0ω/mt, we only need to substitute ω̂ → κt,Hzν
in the spectral densities (5.8), where ν is measured in hertz, and
κt,Hz[s] is a fitting parameter, κt,Hz = √

εμ0h[eV s]/(mtc2[eV]), de-
termining the tachyon mass in the radio band.

We note the conversions ν[GHz] ≈ 2.418 × 105 E[eV] and
1 Jy ≈ 6.2415 × 10−12 eV/(cm2) [21], so that F T,L

ν [Jy] ≈ 1.6022 ×
1011 F T,L

ν [eV/cm2]. To better distinguish linear spectral slopes from
curved spectral cutoffs, one can use the rescaled flux density
νk F T,L

ν [Jy (GHz)k], where k is preferably a positive integer expo-
nent. In Fig. 1, we plot ν F T,L

ν [Jy GHz] against ν[GHz], and the fit is
performed with the total flux density ν F T+L

ν = ν(F T
ν + F L

ν)[Jy GHz].
Summarizing the flux densities employed in the spectral fit in

Fig. 1, we assemble νk F T,L
ν in the above stated units. The transver-

sal Cherenkov density (6.1) reads

νk F T
ν

[
Jy(GHz)k] = 1.6022 × 1011

4πd2[cm] νkθ
(
ω̂T,max(∞) − ω̂

)

× BT(ω,γT,min(ω)
)
, (6.2)

where ω̂T,max(∞) = (1/(εμ) − 1)−1/2, cf. after (5.8). The spectral
function BT in (5.9) and the argument γT,min(ω) in (5.6) are al-
ready expressed in the rescaled variable ω̂ = √

εμ0ω/mt. The lon-
gitudinal counterpart to (6.2) is obtained by replacing T → L and
εμ → ε0μ0, so that ω̂L,max(∞) = (1/(ε0μ0) − 1)−1/2.
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Fig. 1. Tachyonic Cherenkov fit to the Jovian radio emission. Data points of the 1998 multi-site campaign from [2], VLA (Very Large Array), DSN (Deep Space Network) and
Cassini 2001 data from [1]. The fit T + L (solid curve) depicts the total tachyonic flux density ν F T+L

ν rescaled with frequency. This unpolarized density is obtained by adding
the transversal flux component ν F T

ν (dotted curve labeled T) and the longitudinal component ν F L
ν (dashed curve L), generated by a thermal electron plasma, cf. (6.2). Jupiter’s

radio spectrum shows an extended power-law ascent terminating in a spectral peak around 6 GHz, which is followed by an exponentially decaying tail inferred from the
Cassini data point at 13.8 GHz. The fitting parameters are recorded in Section 6.2.
In (6.2), we substitute ω̂ = κtν , where the frequency ν is mea-
sured in GHz so that κt = 109κt,Hz or, cf. after (6.1),

κt[s] = 109
√

εμ0h[eV s]
mtc2[eV] ≈ 4.136 × 10−6

√
εμ0

mtc2[eV] . (6.3)

In this parametrization, we find the transversal spectral function
(5.9) as

BT(ω,γT,min) = Aα,βmtc
2[eV] αt

ε
√

εμ0

εμ

Ω2(ν)

κtν

κ2
t ν2 + 1

1

β2γ α+1
T,min

×
{[

α(α + 1)

(
1 −

(
1

εμ
− 1

)
κ2

t ν2
)

− β2(κ2
t ν2 + 1

)]
(βγT,min)α+1

× Γ (−1 − α,βγT,min)

+
(

1 −
(

1

εμ
− 1

)
κ2

t ν2
)

× e−βγT,min(βγT,min − α)

}
, (6.4)

and the longitudinal spectral function in (5.10) reads

BL(ω,γL,min) = Aα,βmtc
2[eV] αt

ε
√

εμ0

1

Ω2(ν)

κtν

κ2
t ν2 + 1

1

β2γ α+1
L,min

× [
α(α + 1)(βγL,min)α+1Γ (−α − 1, βγL,min)

+ e−βγL,min(βγL,min − α)
]
. (6.5)

In (6.4) and (6.5), we have to insert the frequency-dependent min-
imal Lorentz factors, cf. (5.6),

γT,min(ν) =
√

1 + κ2
t ν2

√
1 + κ2

t ν2(1 − 1/(εμ))

,

γL,min(ν) =
√

1 + κ2
t ν2

√
1 + κ2ν2(1 − 1/(ε0μ0))

, (6.6)
t

and the scale factor

Ω2(ν) =
(

κ2
t ν2

κ2
t ν2 + 1

)σ

(6.7)

of the tachyonic fine-structure constant αq(ω) = αt/Ω
2, αt =

q2/(4π h̄c), see (5.2) and before (6.1).
The Heaviside function in the flux density (6.2) can be replaced

by θ(ω̂L,T,max(∞) − κtν). The highest frequency transversally/lon-
gitudinally radiated is νT,max = (1/(εμ) − 1)−1/2/κt and νL,max =
(1/(ε0μ0) − 1)−1/2/κt respectively, cf. after (6.2). The tachyonic
mass parameter κt is defined in (6.3). The constant amplitudes in
(6.2) and (6.4) can be combined to one fitting parameter,

at = 1.6022 × 1011

4πd2[cm] mtc
2[eV]Aα,β

αt

ε
√

εμ0
, (6.8)

with 4πd2 ≈ 4.58 × 1028 cm2 for Jupiter, cf. after (6.1). This ampli-
tude at can also be used for the longitudinal radiation component
in (6.2) and (6.5).

6.2. Spectral asymptotics and tachyonic Cherenkov fit of the Jovian
radio emission

We consider a thermal electron distribution (5.3) with electron
index α = −2, and permeabilities (2.1) satisfying εμ = ε0μ0 = 1.
(This is slightly more general than vacuum permeabilities ε = μ =
1, ε0 = μ0 = 1.) The transversal spectral function BT(ω,γT,min) in
(6.4) then simplifies to

BT(ω,γT,min) = Aα,βmtc
2[eV]

× αt

ε
√

εμ0

1

Ω2(ν)

κtν

κ2
t ν2 + 1

γT,min

β2
e−βγT,min

×
[(

2 − β2(κ2
t ν2 + 1

)) 1

βγT,min

+ 2 + βγT,min

]
, (6.9)

and its longitudinal counterpart in (6.5) is
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BL(ω,γL,min) = Aα,βmtc
2[eV] αt

ε
√

εμ0

1

Ω2(ν)

κtν

κ2
t ν2 + 1

γL,min

β2

× e−βγL,min

(
2

βγL,min
+ 2 + βγL,min

)
. (6.10)

The minimal Lorentz factor to be substituted is γT,L,min(ν) =√
1 + κ2

t ν2, cf. (6.6), and the fine-structure scale factor Ω2(ν) is
stated in (6.7). ν is measured in GHz, and the tachyonic mass pa-
rameter κt is defined in (6.3).

The flux densities νk F T,L
ν in (6.2) apply, with the Heaviside

function dropped. In the low-frequency limit κtν → 0, we find the
unpolarized flux

ν F T+L
ν ∼ A0ν

2−2σ , A0 = atκ
1−2σ
t

β3
e−β(2 + β)2. (6.11)

The parameter at is defined in (6.8). We can estimate the am-
plitude A0 and the exponent σ by fitting this power-law slope,
which is linear in a log–log plot, to the low-frequency spectrum.
In the asymptotic high-frequency limit κtν � 1, the unpolarized
flux reads

ν F T+L
ν ∼ A∞e−ρν(2 + ρν)2,

A∞ = at

β3κt
, ρ = βκt. (6.12)

An initial estimate of A∞ and ρ is obtained by fitting this ex-
ponentially decaying flux in the high-frequency regime. Once the
parameters A0,∞ , σ and ρ have been estimated from the asymp-
totic spectral fits, we find the temperature parameter β of the
radiating electron population by solving

A0

A∞
ρ2σ−2 = β2σ−2e−β(2 + β)2. (6.13)

This equation readily follows from the definition of the asymptotic
fitting parameters A0,∞ and ρ in (6.11) and (6.12). Initial values
for κt and at are found as κt = ρ/β and at = A∞β2ρ .

The least-squares fit of the flux densities (6.2) is performed by
varying the parameters A0,∞,ρ and σ in the vicinity of their ini-
tial values obtained from the asymptotic fits (6.11) and (6.12); the
corresponding β is obtained by solving (6.13). In addition, we may
vary the permeabilities in the vicinity of εμ = ε0μ0 = 1, subject
to the constraints εμ � 1 and ε0μ0 � 1, cf. after (4.6). The elec-
tron index can also be varied around its equilibrium value α = −2,
cf. (5.3), by employing the nonthermal spectral functions (6.4) and
(6.5) instead of (6.9) and (6.10), but this is not necessary for the
Jovian radio spectrum.

The tachyonic Cherenkov fit of Jupiter’s radio emission depicted
in Fig. 1 is performed with a thermal electron distribution α = −2
and permeabilities εμ = ε0μ0 = 1. The numerical values of the
fitting parameters are

σ ≈ 0.5, β ≈ 23.6,

κt ≈ 0.0339, at ≈ 1.78 × 1012. (6.14)

The fine-structure scaling exponent σ is defined in (6.7), the tem-
perature parameter β in (5.3), the tachyonic mass parameter κt[s]
in (6.3), and the flux amplitude at[eV/cm2] in (6.8). In practice, we
use the parameters of the asymptotic flux limits (6.11) and (6.12)
as fitting parameters, which are A0 ≈ 4.9, A∞ ≈ 4.0 × 109, σ ≈ 0.5
and ρ ≈ 0.8. The parameters in (6.14) have been calculated from
these values as explained above.

The electron temperature is T [K] ≈ 2.51 × 108, cf. after (5.4),
which is the only point where the electron mass enters, via β =
me/(kBT ). (The mass of the radiating particle does not show in
the classical Cherenkov densities (4.5), in contrast to the tachyon
mass mt.) Assuming vacuum permeabilities, ε ≈ μ ≈ 1, ε0 ≈
μ0 ≈ 1, we can estimate the tachyon mass in the radio band,
mtc2[eV] ≈ 1.22 × 10−4 or mtc2 ≈ 29.5 GHz, cf. (6.3) and (6.14).
From the amplitude at in (6.8) and the Jovian distance estimate,
we find the product of the asymptotic tachyonic fine-structure con-
stant αt (defined before (6.1)) and the normalization factor of the
electron distribution (5.3) as Aα,βαt ≈ 4.17 × 1033. The integral
Kα,β in (5.4) determining the electron number Ne = Aα,β Kα,β is
calculated with the temperature parameter β in (6.14), Kα=−2,β ≈
6.65 × 10−13. The estimate for the product of electron count and
tachyonic fine-structure constant is thus Neαt ≈ 2.77 × 1021.

7. Conclusion

We have investigated the emission of tachyonic radiation modes
by freely propagating electrons in a dispersive spacetime. The su-
perluminal group velocity υT,L = dω/dkT,L(ω) is caused by the
negative mass-square in the wave numbers (3.2) of the tachy-
onic radiation field. υT,L differs for transversal and longitudinal
modes [14], unless the wave numbers coincide, which requires
permeabilities satisfying ε0μ0 = εμ. The tachyonic wavelength is
λT,L = 2π/kT,L. In the radio band and with vacuum permeabilities,

we find the group velocity υT,L/c =
√

ν2 + m2
t /ν and wavelength

λT,L[cm] ≈ 29.98/

√
ν2 + m2

t , with ν in GHz. A tachyon mass mt of
29.5 GHz is inferred from the spectral fit in Fig. 1, cf. after (6.14).

We introduced tachyonic field strengths and inductions defined
by constitutive relations with frequency-dependent permeabilities.
We then developed an equivalent 4D space–frequency represen-
tation of the dispersive radiation field, deriving manifestly covari-
ant field equations. Thus the suggestive and efficient formalism of
manifest covariance can be maintained, but the underlying space
conception is non-relativistic, as superluminal wave propagation
requires an absolute spacetime conception to preserve causality
[8–10].

We focused on superluminal Cherenkov radiation, the tachyonic
radiation field being generated by a classical subluminal charge
uniformly moving in a permeable spacetime. The electron mass
does not enter in the classical radiation densities (4.4), which
suggests that the tachyonic quanta are actually emitted by the
medium stimulated by the field of the moving electron [3,22].
A longitudinal radiation component emerges, with amplitude pro-
portional to the negative mass-square of the tachyonic modes. We
parametrized the Cherenkov flux densities with the Lorentz factor
of the inertial charge, averaged them with a relativistic electron
distribution, and explained how to perform tachyonic spectral fits
in the radio band.

A flux average over a mildly relativistic thermal electron pop-
ulation (with Maxwell–Boltzmann distribution) suffices to model
the currently observed Jovian radio spectrum. We also calculated
the tachyonic Cherenkov flux radiated by nonthermal electron pop-
ulations (with power-law distribution), cf. Section 5, which can
be useful to model X- and γ -ray spectra [23–25]. As for Jupiter,
the low flux density at 13.8 GHz (Cassini 2001 in-situ measure-
ment [1,26]) is caused by an exponential spectral cutoff. The low-
frequency spectrum is linear in the double-logarithmic flux repre-
sentation of Fig. 1. The cross-over region around the spectral peak
at 6 GHz is also well reproduced by the tachyonic flux densities
(4.4) averaged over a thermal electron population.

References

[1] S.J. Bolton, et al., Nature 415 (2002) 987.
[2] I. de Pater, et al., Icarus 163 (2003) 434.
[3] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, Ox-

ford, 1984.

http://refhub.elsevier.com/S0375-9601(13)00948-1/bib31s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib32s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib33s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib33s1


R. Tomaschitz / Physics Letters A 377 (2013) 3247–3253 3253
[4] V.L. Ginzburg, V.N. Tsytovich, Transition Radiation and Transition Scattering,
Hilger, Bristol, 1990.

[5] B.M. Bolotovskiı̆, V.L. Ginzburg, Sov. Phys. Usp. 15 (1972) 184.
[6] G.N. Afanasiev, M.V. Lyubchenko, Yu.P. Stepanovsky, Proc. R. Soc. A, Math. Phys.

Eng. Sci. 462 (2006) 689.
[7] R. Tomaschitz, Phys. Lett. A 377 (2013) 945.
[8] R. Tomaschitz, Europhys. Lett. 97 (2012) 39003.
[9] R. Tomaschitz, Europhys. Lett. 98 (2012) 19001.

[10] R. Tomaschitz, Europhys. Lett. 102 (2013) 61002.
[11] R. Tomaschitz, Eur. Phys. J. C 69 (2010) 241.
[12] R. Tomaschitz, Physica A 320 (2003) 329.
[13] R. Tomaschitz, Opt. Commun. 282 (2009) 1710.
[14] R. Tomaschitz, Physica B 404 (2009) 1383.
[15] R. Tomaschitz, Appl. Phys. B 101 (2010) 143.
[16] R. Tomaschitz, Physica A 385 (2007) 558.
[17] R. Tomaschitz, Physica A 387 (2008) 3480.
[18] R. Tomaschitz, Physica B 405 (2010) 1022.
[19] R. Tomaschitz, Physica A (2013), http://dx.doi.org/10.1016/j.physa.2013.09.

068.
[20] R. Tomaschitz, Ann. Phys. 322 (2007) 677.
[21] K. Nakamura, et al., J. Phys. G 37 (2010) 075021.
[22] R. Tomaschitz, Class. Quantum Grav. 18 (2001) 4395.
[23] A. Bhardwaj, et al., J. Geophys. Res. 111 (2006) A11225.
[24] G. Branduardi-Raymont, et al., Astron. Astrophys. 463 (2007) 761.
[25] G. Branduardi-Raymont, et al., Planet. Space Sci. 55 (2007) 1126.
[26] J.L. Kloosterman, et al., Icarus 193 (2008) 644.

http://refhub.elsevier.com/S0375-9601(13)00948-1/bib34s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib34s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib35s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib36s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib36s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib37s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib38s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib39s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib3130s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3131s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3132s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3133s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3134s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3135s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3136s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3137s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3138s1
http://dx.doi.org/10.1016/j.physa.2013.09.068
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3230s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib3131s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3232s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3233s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3234s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3235s1
http://refhub.elsevier.com/S0375-9601(13)00948-1/bib6E3236s1
http://dx.doi.org/10.1016/j.physa.2013.09.068

	Tachyonic Cherenkov emission from Jupiter's radio electrons
	1 Introduction
	2 Tachyonic Proca-Maxwell ﬁelds: manifestly covariant ﬁeld equations in a permeable spacetime
	3 Asymptotic radiation ﬁelds: time-averaged transversal and longitudinal energy ﬂux
	4 Superluminal radiation by an inertial charge in a dispersive spacetime
	5 Tachyonic Cherenkov densities averaged with relativistic electron distributions
	6 Tachyonic spectral ﬁt to Jupiter's radio emission
	6.1 Superluminal Cherenkov ﬂux in the radio band
	6.2 Spectral asymptotics and tachyonic Cherenkov ﬁt of the Jovian radio emission

	7 Conclusion
	References


