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Abstract. The superluminal spectral densities of relativistic electrons in uniform motion are derived, semi-
classically and in second quantization. The effect of electron spin on the tachyonic radiation field, a Proca
field with negative mass-square, is studied. There is a longitudinally polarized spectral component due to
the negative mass-square of the tachyonic quanta. The radiation densities are averaged with electron dis-
tributions, and high- and low-temperature expansions are obtained. Spectral fits to the γ-ray spectra of
the Crab Nebula, the supernova remnant RX J1713.7–3946, and the BL Lacertae objects H1426+428, 1ES
1959+650, Mkn 501, and Mkn 421 are performed. In contrast to TeV photons, the extragalactic tachyon
flux is not attenuated by interaction with the background light; there is no absorption of tachyonic γ-rays,
as tachyons do not interact with infrared photons. The curvature of the TeV spectra in double-logarithmic
plots is caused by the Boltzmann factor of the electron densities generating the tachyon flux. The extended
spectral plateau in the GeV band, visible in the spectral maps of the two Galactic supernova remnants as
well as in the flare spectra of the BL Lacertae objects, is reproduced by the tachyonic radiation densities.
Estimates of the electron populations in the supernova remnants and active galactic nuclei are inferred from
the spectral fits, such as power-law indices, electron temperatures, and source counts. Upper bounds on
the Lorentz factors in the source populations are derived and compared to the breaks in the high-energy
cosmic-ray spectrum.

PACS. 95.30.Gv; 11.10.Lm; 98.70.Sa; 03.50.Kk

1 Introduction

The goal is to find evidence for tachyonic (superluminal)
γ-rays in the high-energy spectra of supernova remnants
and BL Lacertae (BL Lac) objects. Superluminal radia-
tion is considered in the framework of the Proca equation
with negative mass-square [1]. At first sight, the formal-
ism closely resembles electrodynamics, but there are dif-
ferences as well. Apart from the superluminal speed of
the quanta, the radiation is partially longitudinally po-
larized. A basic feature of photons traveling over cosmo-
logical distances is their ability to propagate dispersion
free, as the wave fields are conformally coupled to the
background metric. This property is also retained for
tachyons, as the tachyonmass scales inversely with the cos-
mic expansion factor. There is no interaction of tachyons
with photons; they couple only indirectly via matter
fields. Therefore, contrary to electromagnetic γ-rays, high-
energy tachyons cannot interact with the infrared back-
ground radiation, so that there is no attenuation of the
extragalactic tachyon flux due to electron–positron pair
creation.

a e-mail: tom@geminga.org

The most pronounced difference between photons and
tachyons lies in the emission process itself. Freely mov-
ing electrons can radiate superluminal quanta. We already
demonstrated this with classical point charges and scalar
quantum currents [2]. Here, we include spin, deriving the
quantized superluminal spectral densities generated by
a Dirac current of freely propagating electrons. Radiation
densities attached to a uniformly moving charge have no
analog in electrodynamics; their very existence has sub-
stantial implications for the space–time structure, requir-
ing an absorber medium [3, 4]. The Green function of this
radiation process is time symmetric; there is no retarded
propagator supported outside the light cone. The advanced
modes of the radiation field are converted into retarded
ones by virtue of a nonlocal, instantaneous interaction with
the cosmic absorber medium. The latter defines an abso-
lute space–time, a universal frame of reference, necessary
to render the superluminal signal transfer causal. The time
symmetry of the Green function implies that there is no
radiation damping; the radiating charge stays in uniform
motion. The energy radiated is supplied by the oscillators
constituting the absorber medium [5]. The tachyonic ra-
diation densities depend on the velocity of the uniformly
moving charge in the rest frame of the cosmic absorber,
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and there is a radiation threshold, a minimal speed for su-
perluminal radiation to occur [2]. The absorber medium is
absorptive for advanced modes only; there is no attenua-
tion of retarded modes.
The mentioned properties of tachyonic wave propaga-

tion have been elaborated in previous papers. Here, we
focus on specific applications, apart from Sect. 2, where the
spectral densities generated by a Dirac current are derived.
It is crucial to have a good conceptual understanding of the
spectral densities generated by uniformly moving charges,
as there is no analog in electrodynamics, and a good tech-
nical command is also needed since other superluminal ra-
diation processes reduce in some limit to this radiation,
e.g. tachyonic synchrotron radiation in the limit of infinite
bending radius [6]. Electromagnetic synchrotron densities
vanish in the zero-magnetic-field limit, of course.
In Sect. 2, we derive the transversal and longitudinal

spectral densities of uniformly moving charges. We at first
give a semiclassical derivation, based on the correspon-
dence principle, and then recover the semiclassical result
in second quantization. We compare to previously derived
limit cases, to the superluminal radiation of a classical
point charge in uniform motion, as well as to the spectral
densities generated by a freely propagating scalar mat-
ter field [2]. We then integrate the densities to obtain the
power radiated and the tachyonic number count.
In Sect. 3, we average the tachyonic spectral densities

with electron distributions. We consider thermal Boltz-
mann and Fermi distributions, as well as power-law den-
sities with exponential cutoff. In Sect. 4, we derive the
high- and low-temperature expansions of the averaged ra-
diation densities and discuss spectral peaks, breaks, slopes,
and spectral curvature. In Sect. 5, we perform spectral fits
to the γ-ray broadband of two Galactic supernova rem-
nants (SNRs), the Crab Nebula and RX J1713.7–3946, as
well as to the flare spectra of the blazars H1426+428, 1ES
1959+650,Mkn 501, andMkn 421. In this way, we infer the
cutoff temperature of the electronic/protonic source pop-
ulations, compare it to the break energies in the cosmic-
ray spectrum, and point out the possibility of ultra-high-
energy protons in the supernova remnants. In Sect. 6, we
present our conclusions.

2 Tachyonic spectral densities of freely
moving electrons

Superluminal radiation emitted by a spin-less charge in
arbitrary motion was studied in [2]. The transversal and
longitudinal power coefficients were derived,

PTmn =
1

8π2
ωmnkt(ωmn)

∫
|x|=1

∣∣∣J̃Tmn(x)
∣∣∣2 dΩ ,

PLmn =
m2t
8π2
kt(ωmn)

ωmn

∫
|x|=1

∣∣∣J̃Lmn(x)
∣∣∣2 dΩ , (2.1)

accounting for the radiation of a particle descending from
an initial statem to a final state n. In this section, we eval-
uate the coefficients (2.1) for a Dirac current and derive the

tachyonic spectral densities of a spinning charge in uniform
motion, the power transversally and longitudinally radi-
ated, as well as the tachyonic number counts.
We briefly explain the quantities occurring in the power

coefficients (2.1). The tachyonic wave numbers are related
to the electron frequencies by kt(ωmn) =

√
ω2mn+m

2
t ,

where ωmn = ωm−ωn > 0 is the energy of the radiated su-
perluminal quanta. The integration is over the solid angle
dΩ. The integrands in (2.1) are defined by the integral
transform,

J̃T,Lmn (x) :=

∫
dx′̃jT,Lmn (x

′,x) exp(−ikt(ωmn)n ·x
′) , (2.2)

where n = x/r. The matrices j̃T,Lmn denote the transver-
sal/longitudinal current components,

j̃Tmn(x
′,x) := j̃mn(x

′)− j̃Lmn(x
′,x) ,

j̃Lmn(x
′,x) := n(n · j̃mn(x

′)) . (2.3)

The matrix elements of a free, time-separated Dirac
current (ρ̃mn, j̃mn) read, cf. equation (2.13) of [7],

ρ̃mn(x) =
q

L3
(ωm+m)(ωn+m)+kmknsmsn

2
√
ωmωn(ωm+m)(ωn+m)

×ϕ′
†
nϕ
′
m e
ikmnx ,

j̃mn(x) =
q

L3
(ωm+m)knsn+(ωn+m)kmsm

2
√
ωmωn(ωm+m)(ωn+m)

×ϕ′
†
nσϕ

′
m e
ikmnx . (2.4)

The multi-index n = (kn, sn) indicates electron momen-
tum and spin. We consider positive frequencies, and choose
periodic boundary conditions on a box of size L, so that
k= 2πn/L, with integer lattice points n ∈ Z3. In (2.4), we
use the shortcuts ωmn := ωm−ωn, kmn := km−kn, and
the electronic dispersion relation km =

√
ω2m−m

2. The
2-spinors ϕ′m (explicitly given in equation (A.9) of [7])
solve (σk− ks)ϕ′k,s = 0, where k = |k| is the electronic
wave number and s takes the values ±1 for the deter-
minant to vanish. The helicity functions are normalized
as ϕ′

†
k,sϕ

′
k,s = 1, so that

∫
L3
ρ̃mnd

3x = qδmn. We also

note that ωmnρ̃mn(0) = kmnj̃mn(0) (no summation here).
The squared matrix elements read, cf. equation (2.14)
of [7],

|ρ̃mn|
2 =
q2

L6
ωmωn+m

2+kmknsmsn
4ωmωnkmkn

× (kmkn+ smsnkmkn) ,

∣∣∣̃jmn
∣∣∣2 = q2

L6
ωmωn−m2+kmknsmsn

4ωmωnkmkn
× (3kmkn− smsnkmkn) , (2.5)

where we made use of 2
∣∣∣ϕ′†k,sϕ′q,r

∣∣∣2 = 1+ rsk0q0 and
2
∣∣∣ϕ′†k,sσϕ′q,r

∣∣∣2 = 3− rsk0q0, cf. equation (A.13) of [7].
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They simplify if summed over the ‘final’ spin sn, cf. equa-
tion (2.15) of [7],

∑
sn=±1

|ρ̃mn|
2
=
q2

L6
ωmωn+m

2+kmkn
2ωmωn

,

∑
sn=±1

∣∣∣̃jmn
∣∣∣2 = q2

L6
3ωmωn−3m2−kmkn

2ωmωn
. (2.6)

The integral transform of the unpolarized current,
J̃mn(x), is defined by (2.2), with j̃

T,L
mn replaced by j̃mn(x

′).
The squared transversal current transform is readily cal-

culated by making use of
∣∣J̃Tmn∣∣2 = ∣∣J̃mn∣∣2− ∣∣J̃Lmn∣∣2. All

norms are vectorial, referring to individual matrix elem-
ents, and complex conjugation is implied when squaring
vectors. The matrices J̃T,Lmn (x) depend only on the unit
vector n = x/r. The longitudinal component, J̃Lmn(x), is
determined by the charge density,

J̃Lmn(x) = nωmnk
−1
t (ωmn)

∫
dx′ρ̃mn(x

′)

× exp(−ikt(ωmn)n ·x
′) . (2.7)

This can easily be checked by substituting the continuity
equation, iωmnρ̃mn(x) =∇j̃mn(x), and applying the Gauss
theorem.
If we consider free currents such as (2.4), the integra-

tions in (2.2) and (2.7) can readily be carried out,

J̃mn(x) = (2π)
3 j̃mn(0) δ(Kmn, L) ,

(2π)3δ(k, L) :=

∫
L3
eikxdx ,

J̃Lmn(x) = (2π)
3nωmnk

−1
t (ωmn)ρ̃mn(0)δ(Kmn, L) ,

Kmn := kmn−kt(ωmn)n , kmn := km−kn .
(2.8)

Here, the electronic wave vector is denoted by km or kn,
the subscripts indicating initial and final states, and k
stands for the tachyonic wave vector, occasionally with
a subscript ‘t’ attached. The electronic and tachyonic dis-
persion relations read km =

√
ω2m−m

2 and kt(ωmn) =√
ω2mn+m

2
t , respectively. The electronic wave vectors are

discretized in a box of size L, cf. after (2.4). The trun-
cated δ-function δ(k, L) is a standard limit definition of
the Dirac function, δ(k, L→∞) = δ(k). When squaring
the current transforms (2.8) in the integrands of the power
coefficients (2.1), we substitute (2π/L)3δ2(k, L) = δ(k, L).
This identity holds for L→∞, that is, both sides are limit
definitions of δ(k). The solid angle integration dΩ in (2.1)
refers to the unit vector n= x/r, which enters into the in-
tegrands only through δ(Kmn, L). In the limit L→∞,
∫
|x|=1

δ(Kmn, L)dΩ = 2k
−1
t (ωmn)δ

(
k2mn−k

2
t (ωmn)

)
,

(2.9)

where the integration is done by means of the substitu-
tion

∫
|x|=1 dΩ→ 2

∫
R3
d3nδ(n2− 1). In this way, we find

explicit formulas for the power coefficients (2.1) generated
by a free current,

PTmn =
(2πL)3

4π2
ωmn

k2t (ωmn)

(
k2t (ωmn)

∣∣̃jmn∣∣2−ω2mn∣∣ρ̃mn∣∣2
)

× δ
(
k2mn−k

2
t (ωmn)

)
,

PLmn =
(2πL)3

4π2
m2tωmn

k2t (ωmn)
|ρ̃mn|

2
δ
(
k2mn−k

2
t (ωmn)

)
.

(2.10)

Here, we substitute the squared matrix elements (2.5). The
multi-indicesm and n are defined after (2.4).
The total power radiated is found by summing the co-

efficients (2.10) over the final states and performing the
continuum limit,

PT,L =
∑

kn,sn
PT,Lmn ,

dPT,L = L3(2π)−3
∑

sn
PT,Lmn d

3kn . (2.11)

We introduce polar coordinates for kn, with km as polar
axis, replace d3kn by 2πk

2
ndkn

∫ 1
−1 d cos θ, and integrate

dPT,L over the polar angle, arriving at

dPT(kn) =
L6

4πkm

ωmn

k2t (ωmn)

∑
sn=±1

(
k2t (ωmn)

∣∣̃jmn∣∣2

−ω2mn |ρ̃mn|
2
)
Θ(Dmn)kndkn ,

dPL(kn) =
L6

4πkm

m2tωmn

k2t (ωmn)

∑
sn=±1

|ρ̃mn|
2
Θ(Dmn)kndkn .

(2.12)

The argument in the Heaviside function is

Dmn := 4k
2
mk
2
n− (k

2
m+k

2
n−k

2
t (ωmn))

2 . (2.13)

The squared matrix elements in (2.12) are those stated in
(2.5) and (2.6), supplemented by the insertion

kmkn→
1

2

(
k2m+k

2
n−k

2
t (ωmn)

)

≡ ω2m−ω
2
0−
1

4
m2t −ωmωmn , (2.14)

where ω0 is defined in (2.16). Both the step function
Θ(Dmn) and this substitution in the matrix elements
are a consequence of the δ-function in (2.10). The lat-
ter greatly facilitates the d cos θ integration by virtue of
kmkn = kmkn cos θ in its argument. The identity in (2.14)
follows from the dispersion relations stated after (2.8).
The initial electronic state is indicated by a subscript

m, the final state by n, so that we only need to consider
positive ωmn, cf. after (2.1). Making use of the dispersion
relations, we writeDmn in (2.13) as

1

4m2t
Dmn = ω

2
m−ω

2
0−ωmωmn−

m2

m2t
ω2mn . (2.15)
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Dmn is positive only if ωmn < ωmax, where

ωmax :=
√
ω2m−m

2
ω0

m

mt

m
−
1

2
ωm
m2t
m2
,

ω0 :=m

√
1+
1

4

m2t
m2
. (2.16)

This ωmax is a zero of Dmn(ωmn), and a positive ωmax
requires ωm > ω0. Thus, in the case of uniform motion,
the energy ωm of the radiating charge has to surpass the
threshold ω0 for superluminal radiation to occur. The spec-
tral range is 0< ωmn < ωmax, determined by Θ(Dmn) = 1
in the power differentials (2.12).
We integrate the differentials (2.12) to find the power,

PT,L =
∫ km
0
dPT,L(kn), and to identify the spectral densi-

ties. To this end, we introduce ωmn as integration variable,
ωndωmn =−kndkn, by virtue of the electronic dispersion
relation. We write ω for ωmn, and define p

T,L(ω)dω :=
−dPT,L(ωmn), so that PT,L =

∫ ωmax
0 pT,L(ω)dω. The

transversal and longitudinal spectral densities pT,L(ω) can
be read off from (2.12) and the squared matrix elements
(2.6) (with (2.14) substituted),

pT(ω) =
q2

4π

m2t
ωmkm

ω

ω2+m2t

×

(
ω2m−m

2+
1

4
m2t −ωmω−

(
m2

m2t
−
1

2

)
ω2
)
,

(2.17)

pL(ω) =
q2

4π

m2t
ωmkm

ω

ω2+m2t

(
ω2m−

1

4
m2t −ωmω

)
.

(2.18)

To summarize, ωm and km =
√
ω2m−m

2 denote the
energy and wave number of the radiating electron, and
ωm > ω0. The electronic threshold energy ω0 depends on
the electron–tachyon mass ratio, cf. (2.16). The frequen-
cies radiated range over 0<ω < ωmax. The tachyonic spec-
tral densities pT,L(ω) are cut off at the break frequency
ωmax defined in (2.16). The units h̄= c= 1 can easily be re-
stored. We use the Heaviside–Lorentz system, so that αe =
e2/(4πh̄c) ≈ 1/137 and αq = q2/(4πh̄c) ≈ 1.0× 10−13 are
the electric and tachyonic fine structure constants. We also
note the ratio αq/αe ≈ 1.4×10−11 and the tachyon mass
mt ≈m/238≈ 2.15 keV/c2. These estimates are obtained
from hydrogenic Lamb shifts [1]. Finally, if we substitute
the matrix elements (squared and subjected to (2.14)) of
a free Klein–Gordon current,

ρ̃mn(x) =
q

L3
ωm+ωn
2
√
ωmωn

eikmnx ,

j̃mn(x) =
q

L3
km+kn
2
√
ωmωn

eikmnx , (2.19)

into the power coefficients (2.12) and drop the spin summa-
tions there, we arrive at very similarly structured densities,
cf. [2] and after (2.24). ωmax and in particular the threshold
ω0 remain unchanged.
Remark: the spectral densities (2.17) and (2.18) are de-

rived from the classical power coefficients (2.1) by invoking
the correspondence principle. This amounts to identifying

ρ̃mn(0) and j̃mn(0) in (2.8) and (2.10) with the Hermi-
tian current matrices ρ̃mn and j̃mn in (2.4) and (2.5), and
to performing the spin summation in (2.12) according to
(2.6). It is easy to check that the densities (2.17) and (2.18)
also hold in second quantization. The power coefficients
(2.1) can be recovered from the spontaneous transver-
sal and longitudinal emission rates dwT,spem and dwL,spem,T=0

calculated in equations (3.12) and (3.16) of [7]. We substi-
tute the free charge and current matrices ρ̃mn and j̃mn,
cf. (2.4), for the matrices ρmr,ns and jmr,ns occurring in
equations (3.10)–(3.16) of [7]. We consider unpolarized
transversal radiation, which means replacing εk,λjmr,ns
in dwT,spem by the transversal current jTmr,ns = jmr,ns−
k0(k0jmr,ns), where k0 is the tachyonic unit wave vector,
cf. equations (3.11) and (3.12) of [7]. The angularly inte-
grated transversal and longitudinal emission at ω = ωmn
is PTmn = h̄ωmn

∫
Ω dw

T,sp
em and PLmn = h̄ωmn

∫
Ω dw

L,sp
em, T=0,

which coincides with the power coefficients (2.1) after
restoring the units there.
An elementary integration of the energy densities (2.17)

and (2.18) gives the transversally and longitudinally radi-
ated power as defined before (2.17),

PT,L =
1

2

q2

4π

m2m2t

ωm
√
ω2m−m

2

[(
ω2m
m2
−
1

4

m2t
m2

)

× log

(
1+
ω2max
m2t

)
−
ω2max
m2t

(
MT,L−

1

4

m2t
m2

)

+2
ωm

m

mt

m

(
arctan

ωmax

mt
−
ωmax

mt

)]
,

MT := 1−
1

4

m2t
m2
, ML :=

1

4

m2t
m2
. (2.20)

Here, ωm stands for the electron energy mγ and 0 <
arctan < π/2. The total power radiated is obtained by
adding the polarization components, PT+PL. Similarly,
the tachyonic number counts NT,L (tachyons radiated per
unit time) are found by integrating the number densities,
nT,L(ω) := pT,L(ω)/(h̄ω), up to ωmax,

NT,L =
q2

4π

m2mt

ωm
√
ω2m−m

2

[(
ω2m
m2
−
1

4

m2t
m2

)
arctan

ωmax

mt

−
ωmax

mt

(
MT,L−

1

4

m2t
m2

)
−
1

2

ωm

m

mt

m

× log

(
1+
ω2max
m2t

)]
. (2.21)

To obtain the energy flux and the number flux, we have to
normalize by dividing PT,L and NT,L by 4πd2, where d is
the distance to the source; the differential fluxes are found
by normalizing the respective densities, cf. Sect. 5.
To figure out the terms generated by the electron

spin, we compare to a free scalar charge with current ma-
trix (2.19), cf. [2]. In the power components (2.20) and
count rates (2.21), we only have to replace theMT,L terms
(defined in (2.20)) by MTsc = 1+m

2
t/(4m

2) and MLsc = 0,
respectively, to recover the radiation from a scalar par-
ticle in uniform motion. The phenomenological discussion
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in [2] carries over to spinning particles, including the three
asymptotic regimes elaborated there, the ultra-relativistic,
nonrelativistic, and extreme nonrelativistic limit at the ra-
diation threshold ω0.
In Sect. 3, we average the radiation densities (2.17) and

(2.18) with electron distributions. To this end, we param-
eterize them with the electronic Lorentz factor, writing
ωm =mγ, so that

pT,L(ω, γ) =
q2

4π

m2tω

ω2+m2t

[
γ2−

mt

m

ω

mt
γ

+
1

4

m2t
m2
ω2

m2t
−

(
1+
ω2

m2t

)
MT,L

]
1

γ
√
γ2−1

,

(2.22)

where MT = 1−ML and ML =m2t/(4m
2) as in (2.20).

The spectral cutoff occurs at

ωmax(γ) =mt

(
µ
√
γ2−1−

1

2

mt

m
γ

)
,

µ :=
√
1+m2t/(4m

2) . (2.23)

At the cutoff frequency,

pT(ωmax) =
1

2

m2t
m2
pL(ωmax) , p

L(ωmax) =
q2

4π

ωmax

γ
√
γ2−1

.

(2.24)

We recover from (2.22) the spectral densities generated
by a Klein–Gordon current (2.19), if we replace MT,L by
MT,Lsc as defined after (2.21); ωmax remains unchanged.
The spectral densities of a classical point charge [2] are
recovered by putting all mt/m ratios in (2.22) and (2.23)
equal to zero,

pT,Lcl (ω, γ) =
q2

4π

m2tω

ω2+m2t

[
γ2−

(
1+
ω2

m2t

)
MT,Lcl

]

×
1

γ
√
γ2−1

. (2.25)

Here, MTcl = 1 andM
L
cl = 0, and the classical spectral cut-

off occurs at ωmax,cl :=mt
√
γ2−1. In the ultra-relativistic

limit, γ � 1, we can likewise drop all terms contain-
ing mt/m ratios in (2.22) and (2.23), so that the ultra-
relativistic quantum densities coalesce with the classical
densities (2.25).
The radiation condition ωm > ω0 on the electron en-

ergy, cf. after (2.16), translates into γ > µ for the Lorentz
factor, with µ in (2.23). The threshold on the speed of the
charge for radiation to occur is thus υ > υmin :=mt/(2mµ).
The tachyon–electron mass ratio, mt/m≈ 1/238, cf. after
(2.18), gives υmin/c≈ 2.1×10−3.

3 Spectral averaging with Boltzmann
and Fermi power laws

The radiation densities (2.22) are generated by single
charges. We average them with electron distributions such

as power-law densities, dρ ∝ E−2−αd3p, parameterized
with the Lorentz factor, dρ∝ γ−1−α

√
γ2−1dγ, by means

of E =mγ and p=m
√
γ2−1. A thermal Boltzmann dis-

tribution, dρ∝ e−E/(kT )d3p, admits the parameterization
dρ∝ e−βγ

√
γ2−1γdγ, with β :=mc2/(kT ). A Fermi dis-

tribution is obtained by replacing e−βγ→ 1/(eβγ+1). We
consider hybrid averages, power laws exponentially cut
with Boltzmann and Fermi distributions,

dρBα,β(γ) := γ
−α−1 e−βγ

√
γ2−1dγ , (3.1)

dρFα,β(γ) := γ
−α−1

√
γ2−1

eβγ+1
dγ . (3.2)

The electronic Lorentz factors range in an interval γ1 ≤
γ <∞, where the lower edge satisfies the radiation con-
dition γ1 ≥ µ, µ :=

√
1+m2t/(4m

2), cf. after (2.25). Only
particles with Lorentz factors exceeding the threshold µ
can radiate superluminal quanta, cf. after (2.16). The nor-
malization factors AB,Fα,β (γ1, n1) of these densities are de-

termined by n1 = A
B,F
α,β (γ1, n1)

∫∞
γ1
dρB,Fα,β (γ), where n1 is

the electron count and γ1 the smallest Lorentz factor of
the source population. For notational convenience, we have
not included the normalization factors in the distribu-
tions (3.1) and (3.2). We will also consider averages over
multiple electron populations, for instance,

dρ= λ1dρ
F
−2,β1

+λ2dρ
B
α2,β2

, (3.3)

a thermal fermionic density and a power-law Boltzmann
density. Such linear combinations, including pure power
laws, cf. (4.12), have been used to model γ-ray burst
spectra [8–10] and electron distributions in galaxy clus-
ters [11].
The averaging is carried out via

〈pT,L(ω; γ1, n1)〉
B,F
α,β :=A

B,F
α,β (γ1, n1)

∫ ∞
γ1

pT,L(ω, γ)

× θ(ωmax(γ)−ω)dρ
B,F
α,β (γ) ,

(3.4)

with ωmax(γ) in (2.23). These averages can be reduced to
the spectral functions [12]

BT,L(ω; γ;α, β) :=

∫ ∞
γ

pT,L(ω, γ̃)dρBα,β(γ̃) , (3.5)

FT,L(ω; γ;α, β) :=

∫ ∞
γ

pT,L(ω, γ̃)dρFα,β(γ̃) , (3.6)

where γ ≥ µ. More explicitly,

BT,L(ω; γ;α, β) =
q2

4π

mtω̂

1+ ω̂2
1

γα+1β2

×

{[
(1+α)α+βγ(1+α)

mt

m

ω̂

γ
− (βγ)2

QT,L(ω̂)

γ2

]
(βγ)α+1

×Γ (−α−1, βγ)−

[
α−βγ

(
1−
mt

m

ω̂

γ

)]
e−βγ

}
, (3.7)
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where ω̂ := ω/mt and

QT,L(ω̂) := (1+ ω̂2)MT,L−
1

4

m2t
m2
ω̂2

≡ (1+ ω̂2)∆T,L+
1

4

m2t
m2
, (3.8)

MT = 1−
1

4

m2t
m2
, ML =

1

4

m2t
m2
, ∆T,L :=MT,L−

1

4

m2t
m2
.

(3.9)

We note that ∆T = 1−m2t/(2m
2) and ∆L = 0. The inte-

gration in (3.6) gives

FT,L(ω; γ;α, β) =
q2

4π

mtω̂

1+ ω̂2
βα−1

[
ΓF(−α+1, βγ)

−
mt

m

ω̂

γ
βγΓF(−α, βγ)−

QT,L(ω̂)

γ2
(βγ)2ΓF(−α−1, βγ)

]
,

(3.10)

where we use QT,L(ω̂) in (3.8) as well as the fermionic
counterpart to the incomplete Γ function,

βαΓF(−α, βγ) :=

∫ ∞
γ

γ−α−1dγ

1+ eβγ

=
∞∑
n=1

(−)n+1(nβ)αΓ(−α, nβγ) .

(3.11)

The Boltzmann average BT,L in (3.7) is recovered from
FT,L in (3.10) by replacing ΓF by Γ.
The spectral range of the radiation densities (2.22)

is 0 < ω < ωmax(γ), cf. (2.23). Inversely, the condition
ωmax(γ̂)−ω = 0 or

γ̂(ω) = µ
√
1+ ω̂2+

1

2

mt

m
ω̂ ,

ω̂ :=
ω

mt
, µ :=

√
1+
m2t
4m2

(3.12)

defines the minimal electronic Lorentz factor for radiation
at this frequency. That is, an electron in uniform motion
can radiate at ω only if its Lorentz factor exceeds γ̂(ω). We
also note the identity

γ̂2−
mt

m
ω̂γ̂ = 1+ ω̂2+

m2t
4m2

. (3.13)

With these prerequisites, the averages (3.4) can read-
ily be assembled. The lower edge of Lorentz factors in
the electron distribution defines the break frequency ω1 :=
ωmax(γ1), separating the spectrum into a low- and a high-
frequency band. More explicitly, cf. (2.23),

ω̂1 = µ
√
γ21 −1−

1

2

mt

m
γ1 , (3.14)

where ω̂1 = ω1/mt. Hence, γ̂(ω1) = γ1, and γ̂(ω)>γ1 if ω >
ω1, cf. (3.12). (γ1 = µ corresponds to ω1 = 0.)

In the low-frequency band, ω ≤ ω1, the Boltzmann-
averaged energy density (3.4) reads

〈
pT,L(ω; γ1, n1)

〉B
α,β
=ABα,β(γ1, n1)B

T,L(ω; γ1;α, β) ,

(3.15)

with the spectral function BT,L in (3.7). In the upper fre-
quency band, ω ≥ ω1, we find that

〈
pT,L(ω; γ1, n1)

〉B
α,β
=ABα,β(γ1, n1)B

T,L(ω; γ̂(ω);α, β) ,

(3.16)

with γ̂(ω) in (3.12). We may combine this to give

〈
pT,L(ω; γ1, n1)

〉B
α,β
=ABα,β(γ1, n1)

×
[
BT,L(ω; γ1;α, β)θ(ω1−ω)

+BT,L(ω; γ̂(ω);α, β)θ(ω−ω1)
]
,

(3.17)

which is the explicit evaluation of the Boltzmann aver-
age (3.4), valid for all frequencies 0 ≤ ω ≤∞. The same
relations (3.15)–(3.17) hold true for the Fermi average
〈pT,L(ω; γ1, n1)〉Fα,β in (3.4), if we replace the spectral func-
tion BT,L by the fermionic counterpart FT,L in (3.10), and
the normalization factor ABα,β by A

F
α,β , cf. after (3.2).

The tachyonic number density (tachyons emitted per
unit time and unit frequency interval) is related to the en-
ergy density (3.17) by

〈
nT,L(ω; γ1, n1)

〉B
α,β
:=
1

ω
〈pT,L(ω; γ1, n1)〉

B
α,β . (3.18)

The superscripts T and L denote the transversal and
longitudinal polarization components, cf. Sect. 2, so that
〈nT〉Bα,β is the transversal count rate and 〈p

T〉Bα,β the en-
ergy transversally radiated. If the polarization is not dis-
tinguished, we add the polarization components, writing
〈nT+L〉Bα,β for the unpolarized count; the phenomenologi-
cal discussion of γ-ray spectra in Sect. 5 is centered on the
ω2-rescaled unpolarized count.

4 High- and low-temperature asymptotics
of the averaged radiation densities

4.1 Boltzmann averages

To obtain the low-temperature expansion, β→∞, of the
Boltzmann average (3.17), we substitute the asymptotic
expansion of the incomplete Γ function into the spectral
function BT,L(ω; γ;α, β) in (3.7),

(βγ)α+1Γ (−α−1, βγ)∼

e−βγ

βγ

[
1−
2+α

βγ
+
(2+α)(3+α)

(βγ)2
−· · ·

]
. (4.1)
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This series terminates for integer α≤−2 and is then exact.
Collecting powers, we find that

BT,L(ω; γ;α, β)∼
q2

4π

mtω̂

1+ ω̂2
e−βγ

γαβ
(4.2)

×

[
CT,L0 (γ)+

CT,L1 (γ)

βγ
+
CT,L2 (γ)

(βγ)2
+ · · ·

]
,

with coefficients

CT,L0 (γ) := 1−
mt

m

ω̂

γ
−
QT,L(ω̂)

γ2
,

CT,L1 (γ) :=−α+(1+α)
mt

m

ω̂

γ
+(2+α)

QT,L(ω̂)

γ2
,

CT,L2 (γ) := α(1+α)− (1+α)(2+α)
mt

m

ω̂

γ

− (2+α)(3+α)
QT,L(ω̂)

γ2
. (4.3)

This holds for Lorentz factors γ ≥ µ, cf. after (3.2). The
expansion parameter is βγ � 1. Substituting γ̂(ω) for
γ, cf. (3.12) and (3.13), we find that CT,L0 (γ̂(ω)) = (1−
∆T,L)(1+ ω̂2)/γ̂2, so thatCT0 (γ̂) = O(m

2
t/m

2); the leading
order in the 1/(βγ) expansion of the transversal distribu-
tion (3.16) can be smaller than the next-to-leading order. If
β� 1 and γ1 = µ, the spectral peak of 〈pT,L(ω; γ1, n1)〉Bα,β ,
cf. (3.17), occurs at very small ω̂, owing to the expo-
nential in (4.2), so that we can expand in ω̂. The max-
imum is therefore determined by the factor ω̂ e−βγ̂ and is
located at

ω̂max ≈

√
ξ2+

1

βµ
− ξ , ξ :=

1

4µ

mt

m
, (4.4)

so that ω̂max ≈ 1/
√
βµ, if βξ2� 1. In the opposite limit,

βξ2� 1, we find that ω̂max ≈ 1/(2βξµ). The peak at ω̂max
is followed by exponential decay; there is no power-law tail.
If β� 1 and γ1� 1, the peak of the densities (3.17) is de-
termined by the factor ω̂/(1+ ω̂2) in (4.2) and occurs at
ω̂max ≈ 1. It is followed by power-law decay,BT,L ∝ 1/ω̂, in
the range 1� ω̂� γ1. At about ω̂ ≈ γ1, exponential decay
sets in.
We turn to the high-temperature expansion of BT,L in

(3.7), based on

(βγ)α+1Γ(−α−1, βγ) = (βγ)α+1Γ(−α−1)+
1

α+1
−
βγ

α

+
(βγ)2

2!(α−1)
−· · · . (4.5)

High-temperature expansions always require βγ � 1. In
the opposite limit, βγ � 1, we may still use the low-
temperature expansion (4.2), even if β� 1. We also note
that the series

(βγ)α+1Γ(−α−1, βγ)∼ (βγ)α+1Γ(−α−1) (4.6)

+
e−βγ

α+1

(
1−
βγ

α
+
(βγ)2

α(α−1)
−· · ·

)

is the asymptotic low-temperature expansion replacing
(4.1) if both βγ and |α| are large and βγ/ |α| � 1; we
will not consider this limit here, assuming moderate elec-
tronic power-law indices. The high-temperature expansion
of BT,L(ω; γ;α, β) follows from the series (4.5),

BT,L(ω; γ;α, β) =
q2

4π

mtω̂

1+ ω̂2
γ1−α

{
(βγ)α−1Γ (−α−1)

×

[
(1+α)α+βγ(1+α)

mt

m

ω̂

γ
− (βγ)2

QT,L(ω̂)

γ2

]

+DT,L0 −βγDT,L1 +
(βγ)2

2!
DT,L2 −· · ·

}
. (4.7)

We here use the shortcut

DT,Ln (ω̂; γ, α) :=
1

α−n−1
−
mt

m

ω̂

γ

1

α−n

−
QT,L(ω̂)

γ2
1

α−n+1
. (4.8)

Singularities occurring at integer α cancel if ε-ex-
panded [12].
The averages of the classical densities (2.25) are ob-

tained by dropping all terms depending on mt/m ratios
in (3.7)–(3.9) as well as (4.2) and (4.7). In particular,
µ= 1, γ̂(ω) =

√
1+ω2/m2t , and ω1 =mt

√
γ21 −1, cf. (3.12)

and (3.14). The first two orders of the low-temperature ex-
pansion of the classicalBT,L thus read, cf. (4.2),

BT,L(ω; γ;α, β)∼
q2

4π

m2tω

ω2+m2t

e−βγ

γαβ

×

[(
1−
∆T,L

γ2
ω2+m2t
m2t

)

+
1

βγ

(
(2+α)

∆T,L

γ2
ω2+m2t
m2t

−α

)
+ · · ·

]
,

(4.9)

with ∆T = 1 and ∆L = 0; the leading order vanishes in
BT(ω; γ̂(ω);α, β).
At high temperature, we find in lowest order in βγ, if

α> 1,

BT,L(ω; γ;α, β)∼
q2

4π

m2tω

ω2+m2t

γ1−α

α−1
(4.10)

×

(
1−
α−1

α+1

∆T,L

γ2
ω2+m2t
m2t

)
.

This is valid up to terms of O(βγ, (βγ)α−1). (If α > 1, the
DT,L0 term in (4.7) gives the dominant contribution stated
in (4.10); the term containing the mt/m ratio in D

T,L
0 has

been dropped.)
If γ1 = µ, the maximum of 〈pT,L(ω; γ1, n1)〉Bα,β is deter-

mined by the leading factor ∝ ωγ̂−α−1 in (4.10), and is
located at ωmax ≈mt/

√
α. (This ωmax is not to be con-

fused with the spectral cutoff ωmax(γ) in (2.23).) The peak
is followed by power-law decay ∝ ω−α for ω�mt/β and
exponential decay starting at about ω ≈mt/β. The low-
temperature expansion (4.9) applies for ω�mt/β.
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If γ1� 1 (but still βγ1� 1), the peak of 〈pT,L(ω; γ1,
n1)〉Bα,β in (3.17) is determined by the factor ω/(ω

2+
m2t ) in (4.10) and occurs at ωmax ≈ mt. It is followed
by power-law decay, 〈pT,L〉Bα,β ∝ 1/ω, in the range 1�
ω/mt� γ1, which turns into 〈pT,L〉Bα,β ∝ ω

−α in the inter-

val γ1 <ω/mt� 1/β. At ω≈mt/β, there is an exponential
cutoff according to (4.9). In Sect. 5, we consider the E2-
rescaled flux density E2dNT,L/dE, which is related to
the energy density 〈pT,L〉Bα,β as stated in (5.1). The pre-
ceding scaling relations for 〈pT,L〉Bα,β give a plateau value
E2dNT,L/dE ∝ 1 in the range 1� E/(mtc2)� γ1, fol-
lowed by power-law decay E2dNT,L/dE ∝ E1−α in the
band γ1 < E/(mtc

2)� 1/β, and subsequent exponential
decay.
The foregoing discussion is based on (4.10), and thus

requires an electron index α > 1. We now turn to α < 1,
which means replacing (4.10) by

BT,L(ω; γ;α, β)∼
q2

4π

m2tω

ω2+m2t
βα−1Γ(1−α) . (4.11)

This approximation of (4.7) is valid up to terms of O(βγ,
(βγ)1−α). The spectral peak at ωmax ≈mt is again deter-
mined by the factor ω/(ω2+m2t ). Adjacent is a power-law
slope 〈pT,L〉Bα,β ∝ 1/ω in the range 1� ω/mt� 1/β, so

that E2dNT,L/dE ∝ 1, cf. (5.1). At ω ≈mt/β, there is the
crossover to exponential decay, cf. (4.9). This holds true
for γ1 = µ as well as γ1� 1, provided that βγ1� 1, since
the leading order (4.11) does not depend on γ. If the lat-
ter condition is not met, that is, if βγ1� 1 despite β being
small, then the low-temperature expansion (4.9) applies
instead of (4.11). The spectral functions BT,L in (4.9)–
(4.11) are the leading order approximations of the low- and
high-temperature expansions (4.2) and (4.7), except that
all terms containing the mass ratio mt/m are dropped.
The approximations (4.9)–(4.11) are meant as a qualita-
tive overview; they are insufficient in the crossover region
βγ =O(1). In the spectral maps in Sect. 5, we use the exact
spectral functions (3.10).
For electron indices α > 1, we may consider the limit

β = 0 in (3.1), a pure power-law average with density
dρBα,0 ∝ E

−2−αd3p. The integration (3.5) is elementary if
performed with dρBα,0(γ) in (3.1),

BT,L(ω; γ;α, 0) =
q2

4π

mtω̂

1+ ω̂2
γ1−α (4.12)

×

(
1

α−1
−
mt

m

ω̂

γ

1

α
−
QT,L(ω̂)

γ2
1

α+1

)
,

where QT,L(ω̂) is defined in (3.8). This power-law average
can also be recovered as the β→ 0 limit of (4.7). In [13, 14],
we studied the ultra-relativistic limit of (4.12), approxi-
mating dρBα,0 ∼ γ

−αdγ.We used the classical density (2.25)
and averaged over finite energy shells [γ1, γ2], 1� γ1�
γ2, corresponding to B

T,L(ω; γ1;α, 0)−BT,L(ω; γ2;α, 0)
in (3.5). (Here, we may use (4.12) even for α< 1.)We found
that averages over finite energy shells can well reproduce
the observed spectral plateaus and power-law slopes. To

generate spectral curvature, a smooth exponential cutoff in
the electron spectrum is required.

4.2 Fermi averages

The fermionic spectral function FT,L in (3.10) can be
traced back to the Boltzmann averageBT,L in (3.7) via

FT,L(ω; γ;α, β) =
∞∑
n=1

(−1)n+1BT,L(ω; γ;α, nβ) . (4.13)

This series is efficient for large βγ, since in this case
BT,L(ω; γ;α, nβ) ∝ e−nβγ , cf. (4.2). The low-temperature
expansion of FT,L is thus given by (4.13) with the low-
temperature expansion (4.2) of BT,L substituted.
The high-temperature expansion of FT,L(ω; γ;α, β) is

based on (3.10) and the integral representation of ΓF in
(3.11). First,

βαΓF(−α, βγ) =

(∫ ∞
0

−

∫ γ
0

)
γ−α−1dγ

1+ eβγ
(4.14)

= βαΓF(−α)+
1

2
γ−α
(
1

α
−
1

2

βγ

α−1
+
1

24

(βγ)3

α−3
−· · ·

)
,

where

ΓF(s) := Γ(s)ζ(s)(1−2
1−s) . (4.15)

This is the counterpart to expansion (4.5), and the se-
ries is to be continued according to the Euler expansion,

2

1+ eβγ
= 1+2

∞∑
n=1

(βγ)2n−1
1−22n

(2n)!
B2n

= 1−
1

2
βγ+

1

24
(βγ)3−· · · , (4.16)

where B2n are Bernoulli numbers. By substituting (4.14)
into (3.10), we find that

FT,L(ω; γ;α, β) =
q2

4π

mtω̂

1+ ω̂2
γ1−α

{
(βγ)α−1

×

[
ΓF(−α+1)−βγ

mt

m

ω̂

γ
ΓF(−α)

−(βγ)2
QT,L(ω̂)

γ2
ΓF(−α−1)

]

+
1

2

[
DT,L0 −

βγ

2
DT,L1 +

(βγ)3

24
DT,L2 −· · ·

]}
,

(4.17)

with ΓF in (4.15). The series continues as in (4.16), with co-
efficients DT,Ln (ω̂; γ, α) defined in (4.8). Expansion (4.17)
is valid for all α; the singularities occurring for integer
α ≥ −1 in the ΓF functions and the DT,Ln coefficients
cancel each other if ε-expanded. In the case of a ther-
mal Fermi distribution, α = −2, we use ΓF(1) = log 2.
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If we replace in (4.17) the fermionic ΓF by the ordinary
Γ function and generate the DT,Ln series with 2e−βγ in-
stead of (4.16), we recover the Boltzmann average (4.7).
The discussions following (4.3), (4.10), and (4.11) regard-
ing spectral peaks, slopes, and exponential cutoffs in the
low- and high-temperature limits remain valid for Fermi
averages. The spectral maps in Sect. 5 are Boltzmann
averages, although Fermi averages can be used as well,
with the same parameters. In the resolution of the figures,
they are virtually indistinguishable, even in the crossover
region.

5 Tachyonic spectral fits to γ-ray spectra
of supernova remnants and BL Lac objects

We fit the γ-ray spectra of Galactic supernova remnants
and active galactic nuclei (AGNs) with tachyonic cascade
spectra assembled from the radiation densities in Sect. 3.
We study the γ-ray wideband spectra of the Crab Nebula
and SNR RX J1713.7–3946, cf. Figures 1 and 2, as well as
flare spectra of the BL Lacs H1426+428, 1ES 1959+650,
Mkn 501, and Mkn 421, cf. Figures 3–6. The spectral maps
show the ω2-rescaled tachyonic number flux,

E2
dNT,L(E;α, β, γ1, n1)

dE
:=

ω

4πd2
〈pT,L(ω; γ1, n1)〉

B
α,β ,

(5.1)

Fig. 1. γ-ray wideband of the Crab Nebula, unpulsed emission. Data points from BATSE [22], COMPTEL [23] (see also [24, 25]),
EGRET [23, 26], CELESTE [27], STACEE [28], and HEGRA [29, 30]. The solid line T+L stands for the unpolarized differential
tachyon flux dNT+L/dE, rescaled with E2 for better visibility. The transversal and longitudinal flux components, dNT,L/dE, are
drawn as dot-dashed (T) and double-dot-dashed (L) curves. The cascade spectra labeled by ρi=1,2,3 (dotted and dashed lines) are

the unpolarized flux densities dNT+L(E, ρi)/dE of three electron populations ρi, cf. Table 1 and after (5.3). All fluxes are rescaled
with E2. The cascades add up to the total flux T+L, which is the actual spectral fit with parameters (of the electron densities ρi)
recorded in Table 1. The tachyonic spectral map of the pulsed emission is depicted in [15]

where 〈pT,L〉Bα,β is the averaged energy density (3.17)
and d the distance to the source. The superscript B in-
dicates a Boltzmann average, but the following applies
to Fermi averages (3.2) as well. We restore the natural
units on the right-hand side of (5.1); up to now we have
used h̄ = c = 1. The proper dimensions are recovered by
substituting ω(1) → h̄ω(1) =: E(1), m(t)→m(t)c

2, ω̂(1) →
E(1)/(mtc

2), and q2/(4π)→ αq/h̄ into (3.7), (3.12), (3.14),
and (3.17). αq is the tachyonic fine structure constant, cf.
after (2.18). The spectral maps in Figs. 2–6 are in TeV
units, with the differential tachyon flux dNT,L/dE in units
of TeV−1 s−1 cm−2. The Crab γ-ray broadband in Fig. 1
is scaled to MeV units. The normalization factor in (3.17)
is dimensionless, ABα,β = n1/

∫∞
γ1
dρBα,β(γ). Here, n1 is the

number of radiating electrons with Lorentz factors exceed-
ing γ1, distributed according to density dρ

B
α,β in (3.1). α

is the electronic power-law index, and β is the exponen-
tial cutoff in the electron spectrum, both to be determined
from the spectral fit like n1 and γ1. As for the electron
count n1, it is convenient to use a rescaled parameter n̂1 for
the fit [15],

n̂1 :=
αqn1

h̄[keV s] 4πd2[cm]
≈ 1.27×10−39

n1

d2[kpc]
, (5.2)

which determines the amplitude of the tachyon flux.
Here, h̄[keV s] implies the tachyon mass in keV units,
that is, mtc

2 ≈ 2.15 in the spectral function (3.7). The
purpose of this rescaling is to avoid the uncertain dis-
tance estimate in the actual fitting procedure. Once
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Fig. 2. γ-ray spectrum of SNR RX J1713.7–3946. Data points from EGRET [26, 31], CANGAROO [32], and HESS [33, 34]. The
plots are labeled as in Fig. 1. The spectral fit T+L is found by adding the cascade spectra ρ1,2 (unpolarized) of two electron pop-
ulations with parameters listed in Table 1. Adjacent to the GeV plateau is a nearly straight TeV power-law slope. In contrast to
the thermal spectra in Figs. 3–6, the cutoff temperature of the ρ1 cascade in Figs. 1 and 2 is too high to significantly curve the
power-law slope in the range covered by the TeV data points. The solid line T+L is the unpolarized flux; the transversal and
longitudinal flux components are labeled T and L. Two spectral breaks are visible as edges in the longitudinal spectral map, at
the break frequencies defined by γ in Table 1, cf. (3.14)

Fig. 3. Spectral map of the BL Lac object H1426+428 (at z ≈ 0.129). Data points from CAT [35], Whipple [36], and HEGRA [37].
The fit (solid line T+L) is obtained by adding the cascades ρ1,2 generated by electron densities defined in Table 1. ρ1 is the cas-
cade producing the TeV spectrum. In this range, ρ2 is exponentially decaying and does not contribute. The high end of the GeV
spectrum is generated by adding the flux of the ρ2 population to the ρ1 plateau. The spectral fit T+L is for unpolarized radiation
and can be split into a transversally (T) and a longitudinally (L) polarized flux
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Fig. 4. BL Lac 1ES 1959+650 (at z ≈ 0.047). Data points from Whipple [38], see also [39]. The spectral fit T+L is composed of
two cascades ρ1,2. The parameters of the respective electron distributions are recorded in Table 1. The fluxes labeled T and L are
the polarization components of the unpolarized fit T+L. The spectral plateau is more extended than in Fig. 3, but there is no
substantial change in the TeV band regarding curvature. The electron populations producing the flare spectra in Figs. 3–6 are all
thermal; the spectral curvature is generated by the Boltzmann factor in the averaged radiation densities, cf. (4.2)

Fig. 5. BL Lac Mkn 501 (z ≈ 0.034). Data points from HEGRA [40], revised points from [41]. The revised data points are not
taken into account in the spectral fit, as the revision is based on intergalactic absorption, assuming electromagnetic γ-rays. The
tachyonic γ-ray flux is not attenuated by interaction with infrared background photons. The labeling of the curves is the same as
in the previous figures. The spectral fit T+L is a single cascade ρ1, radiated by an electron population listed in Table 1

n̂1 is known, we can calculate via (5.2) the number of
radiating electrons n1 constituting the density dρ

B
α,β .

This, however, implies that all tachyons reaching the
detector are properly counted. At γ-ray energies, only

a tiny αq/αe-fraction (the ratio of tachyonic and elec-
tric fine structure constants, cf. (2.18)) of the tachyon
flux is actually absorbed, cf. Sect. 6 and [14, 15]. This re-
quires a rescaling of the electron count n1 (as calculated
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Fig. 6. Spectral map of Mkn 421 (z ≈ 0.031). Data points from HESS [42], see also [43, 44]. The spectral fit T+L is a cascade ρ1
generated by an electron distribution specified in Table 1. The transversal and longitudinal fluxes radiated are labeled T and L.
Compared to the BL Lacs in Figs. 3–5, there is no apparent correlation between spectral curvature and redshift, which suggests
that the curvature is generated by the electron population in the galactic nucleus rather than intergalactic absorption

from (5.2)), so that the actual number of radiating elec-
trons is ne1 := n1αe/αq ≈ 7.3×10

10n1.
In Table 1, we indicate the flux amplitude n̂1 obtained

from the spectral fit, as well as the renormalized elec-
tron count ne1 depending on the distance estimate. In the
table, we drop the subscript 1 in n̂1, n

e
1, and γ1, and de-

note the density dρBα,β by ρ1 (or ρi=1,2,3 in cascade spectra,
cf. after (5.3)). This density ρ1 is defined by parameters
(α, β, γ1, n̂1→ n1) extracted from the spectral fit. The dis-
tance estimates of the four low-z AGNs in Table 1 are
based on d∼ cz/H0, with c/H0 ≈ 4.4×103Mpc, that is,
h0 ≈ 0.68, cf. [16]. The redshifts are quoted in the re-
spective figure captions. The recessional speed, roughly
cz, is already above the radiation threshold, cf. after
(2.25), but this velocity component is negligible for the
ultra-relativistic electron populations generating the γ-
ray spectra. The source count in the surface field of the
Crab pulsar is ne ≈ 2.6×1049, cf. [15], to be compared
to 1.9×1050 obtained here for the whole remnant, cf.
Table 1. A count of 1.3×1051 electrons/positrons in the
nebula was derived from an electromagnetic synchrotron–
inverse-Compton model in [17]. The source numbers listed
in Table 1 are lower bounds based on γ-ray emission only.
The tachyonic fine structure constant enters as a square
in the number count, once via (5.2) when inferring the
preliminary count n1 from the spectral fit, and a sec-
ond time when rescaling this count to obtain the actual
source number ne1. The tachyonic fine structure constant is
an independent estimate from Lamb shifts in hydrogenic
ions [1], and it is noteworthy that tachyonic and electro-
magnetic spectral fits result in comparable source counts.
The cutoff in the electron energy is much higher compared
to Compton fits, compensating the small tachyonic fine

structure constant in the spectral density and absorption
probability.
In the case of a thermal electron distribution (α =−2

in (3.1) and (3.2)), we may identify β =mc2/(kT )≈ 5.93×
109/T [K], or kT [keV] ≈ 511/β. We use this definition of
electron temperature also for other electron indices. kT
is the cutoff energy at which the exponential decay sets
in. At high temperature, the density (3.1) is peaked at
γpeak ≈−α/β, provided that α < 0 and β� |α|; the peak
is followed by exponential decay. The bulk of the fermionic
densities (3.2) is likewise located at about this γpeak. If
α > 0, the electron density is monotonically decreasing,
at first as a power law and exponentially beyond kT .
Positive electron indices occur in the shock-heated plas-
mas of the SNRs, cf. Table 1. Nearly straight power-law
slopes, as seen in the TeV range of Figs. 1 and 2, can only
emerge for electron indices α > 1, cf. (4.10)–(4.12). The
crossover energy from the GeV plateau into the power-
law slope is determined by the lower edge γ1 of elec-
tronic Lorentz factors in the blast wave. If α < 1, the GeV
plateau is followed by exponential decay, cf. the flare spec-
tra in Figs. 3–6.
The cutoff kT in the electron energy is listed in

Table 1, for each electron population generating a cas-
cade in the γ-ray wideband, cf. after (5.3). These cut-
offs are to be compared to the spectral breaks in the
cosmic-ray spectrum, occurring at 103.5 TeV, 105.8 TeV,
and 107 TeV, dubbed knee, second knee, and ankle, re-
spectively [18, 19]. In all four BL Lacs as well as in the
remnant RX J1713.7–3946, there are electron populations
with energies reaching the knee of the cosmic-ray spec-
trum. In the Crab, the electron energies even extend to
the second knee. As for protonic source particles, the cut-
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Table 1. Electron distributions ρi generating the tachyonic cascade spectra of the supernova remnants and active galactic nu-
clei in Figs. 1–6. Each ρi stands for a Boltzmann power-law density dρ

B
α,β(γ) defined by parameters (α, β, γ, n̂), cf. (3.1). α is the

electronic power-law index, β the cutoff parameter in the Boltzmann factor, and γ the lower edge of Lorentz factors in the elec-
tronic source population ρi. n̂ is the amplitude of the tachyon flux generated by ρi, from which the electron count n

e is inferred,
cf. (5.2). d is the distance to the SNR or BL Lac; the estimate for the remnant RX J1713.7–3946 is taken from [20, 21]. kT is the
electron temperature. The blazar spectra are thermal flare spectra with electron index α=−2. The entry µ in the γ column de-
notes the electronic Lorentz factor defining the radiation threshold, cf. after (3.2). The cascade spectra labeled ρi in Figs. 1–6 are
obtained by averaging the tachyonic radiation densities (2.22) with the electron distributions ρi, cf. Sects. 3 and 5; the parameters
(α, β, γ, n̂) of each ρi are extracted from the spectral fit

α β γ n̂ d (kpc) ne kT (TeV)

SNRs
Crab Nebula 2
ρ1 1.7 2.15×10−13 2.3×108 6.0×10−3 1.4×1048 2.4×106

ρ2 0.3 5.38×10−5 1.0×103 0.2 4.6×1049 9.5×10−3

ρ3 −1.1 8.6×10−3 40 0.62 1.4×1050 5.9×10−5

RX J1713.7–3946 1
ρ1 1.2 3.52×10−12 6.3×108 2.1×10−3 1.2×1047 1.5×105

ρ2 0.8 9.35×10−5 3.3×104 5.0×10−3 2.9×1047 5.5×10−3

BL Lacs
H1426+428 5.7×105

ρ1 −2 6.94×10−10 µ 2.1×10−4 3.9×1057 740
ρ2 −2 1.26×10−8 µ 5.0×10−3 9.3×1058 41

1ES 1959+650 2.1×105

ρ1 −2 6.94×10−10 µ 1.2×10−2 3.1×1058 740
ρ2 −2 3.47×10−8 µ 0.7 1.8×1060 15

Mkn 501 1.5×105

ρ1 −2 6.62×10−10 µ 1.0×10−2 1.3×1058 770

Mkn 421 1.4×105

ρ1 −2 1.21×10−9 µ 1.0×10−2 1.1×1058 420

off energies in Table 1 have to be multiplied with 1.8×
103, the proton/electron mass ratio, so that we arrive
in the 1021eV region, at ultra-high-energy protons in the
two Galactic SNRs. (The tachyon/electron mass ratio in
the spectral functions (3.7)–(3.10) has to be replaced by
mt/mp ≈ 2.3× 10−6. In Figs. 1–6, however, this is not
really necessary, since even the tachyon/electron ratio is
too small to noticeably affect the high-energy spectral
maps.)
Wideband cascade spectra are obtained by averaging

over multiple electron populations,

〈pT,L(ω)〉B :=
∑
i

〈pT,L(ω; γi, ni)〉
B
αi,βi
,

E2
dNT,L(E)

dE
:=

ω

4πd2
〈pT,L(ω)〉B . (5.3)

The normalization factors ABαi,βi(γi, ni) of the individ-
ual averages in the series (5.3) are calculated via

ni =A
B
αi,βi
(γi, ni)

∫ ∞
γi

dρBαi,βi(γ) , (5.4)

where ni is the electron count and γi the smallest Lorentz
factor in the population defined by density dρBαi,βi . The

electron numbers ni (attached to a power-law index αi,
temperature βi =mc

2/(kTi), and interval boundary γi,
cf. (3.1)) determine the weights in the linear combina-
tion (5.3). Each density 〈pT,L〉Bαi,βi generates a cascade,
labeled by ρi=1,2,3 in the figures. The spectral maps of the
Markarian galaxies in Figs. 5 and 6 are not wideband; there
is only one electron distribution and thus only one cas-
cade ρ1 for each flaring state. Fermi cascades are obtained
in the same way, the multiple average 〈pT,L(ω)〉F in (5.3)
being assembled with 〈pT,L〉Fαi,βi and dρ

F
αi,βi
, cf. (3.2) and

after (3.17).
If the polarization is not observed, we may add the

transversal and longitudinal densities, writing 〈pT+L〉B :=
〈pT〉B+ 〈pL〉B for the energy density and NT+L := NT+
NL for the number flux in (5.1) and (5.3). In the fig-
ures, we show the E2-scaled unpolarized flux density,
E2dNT+L/dE (solid line T+L), fitted to the data points.
The individual averages in series (5.3) generate cascades
drawn as dashed or dotted lines. (We always plot the E2-
scaled differential number flux, cf. (5.1), in this case the
unpolarized flux from the individual source populations.)
The cascades are labeled by ρi like the electron densi-
ties in Table 1 generating them. Each electron density ρi
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is defined by parameters (αi, βi, γi, n̂i) obtained from the
spectral fit and listed in the table, cf. after (5.2). The un-
polarized tachyon flux, drawn as a solid line labeled T+L,
is found by adding the cascade spectra ρi.
The rescaled transversal and longitudinal flux densities,

E2dNT,L/dE, are depicted as dot-dashed (T) and double-
dot-dashed (L) curves. The unpolarized flux T+L can also
be obtained by adding these curves. The differential energy
flux is EdN/dE. We have here dropped the possible su-
perscripts T, L, or T+L, and do the same in the figures,
labeling the respective curves with these letters instead.
The E2-scaled number flux, E2dN/dE (plotted in the fig-
ures), has no common conservation law associated with it,
but this rescaling is frequently used in double-logarithmic
plots of TeV spectra to render the curvature of steep spec-
tral slopes better visible, and it is in this rescaling that
spectral plateaus emerge in the GeV band.

6 Conclusion

We have derived the superluminal spectral densities gener-
ated by a Dirac current of freely moving charges, cf. Sect. 2,
and explained the spectral averagingwith Fermi and Boltz-
mann power laws, cf. Sect. 3. We have calculated the high-
and low-temperature expansions of the averaged radiation
densities, identified the asymptotic spectral parameters,
and explained how they affect the power-law slopes, spec-
tral plateaus, and spectral curvature in double-logarithmic
plots, cf. Sect. 4. Finally, we have demonstrated that the
high-energy spectral maps of SNRs and BL Lacs can be
generated by tachyonic cascade spectra, cf. Sect. 5.
The purpose of this article is to provide evidence for

the γ-ray spectra of supernova remnants and blazars to be
tachyonic. Traditional radiation mechanisms such as in-
verse Compton scattering or pion decay fail to reproduce
the extended GeV plateaus in the spectral maps [22, 31, 39].
The curvature present in the TeV flare spectra of BL Lacs
is not correlated with distance, so that absorption due to
interaction with background photons is not an attractive
explanation for spectral curvature. Here, we have shown
that the superluminal spectral densities of uniformly mov-
ing electrons are capable of producing the GeV plateaus in
the spectral maps. The spectral curvature stems from the
cutoff generated by the Boltzmann factor in the electron
densities, which carries over to the averaged radiation den-
sities, cf. (4.2). Intrinsic spectral curvature is also indicated
by the strongly curved spectral maps of Galactic sources
such as the pulsar wind nebula in SNR G0.9+0.1 and the
TeV γ-ray sources HESS J1303–631 and HESS J1825–137,
cf. [12].
We have studied superluminal radiation from electrons

in straight uniform motion. Tachyonic synchrotron and
cyclotron radiation were investigated in [6, 13, 14]. In the
limit of large bending radius (zero-magnetic-field limit),
the tachyonic synchrotron densities converge to the spec-
tral densities (2.25) for uniform motion. A finite bending
radius induces modulations in the spectral densities. At µG
field strengths as encountered in the shock-heated plasmas

of SNRs, these oscillations are quite small, just tiny ripples
along the slope of densities (2.25) with increasing ampli-
tude toward the spectral break, cf. [6]. If integrated over
a thermal or power-law electron population, these oscilla-
tions are averaged out. In [13], we averaged synchrotron
densities of SNRs with broken power laws, arriving at
the classical limit of the spectral function (4.12). The con-
clusions of this paper, in particular the spectral maps in
Figs. 1 and 2, do not change if the electron trajectories are
bent by weak magnetic fields.
In this article, we have focused on γ-ray spectra. We

conclude with some remarks on tachyonic X-rays. The
negative mass-square in the dispersion relation results in
a bound on the tachyonic wavelength. The tachyon mass,
mt ≈ 2.15 keV/c2, gives a Compton wavelength of λC =
2πh̄/(mtc) ≈ 5.8 Å. Energy and wavelength are connected

as λ = 2πh̄c/
√
m2t c

4+ h̄2ω2. The Compton wavelength is

apparently the largest wavelength a tachyon can attain.
At radio frequencies, the wavelength is constant and coin-
cides with the Compton wavelength. Speed and energy of
tachyonic quanta are related by h̄ω =mtc

2(υ2/c2−1)−1/2.
At γ-ray energies, their speed is indistinguishably close to
the speed of light. The basic difference to electromagnetic
radiation is the longitudinally polarized flux component.
The polarization of tachyons can be determined from the
transversal and longitudinal ionization cross sections of Ry-
dberg atoms, which peak at different scattering angles [45].
It is at hard-X-ray energies that a difference in the speed of
photons and tachyons starts to emerge. If the tachyon flux
is inferred from a grating spectrometer [46, 47], we have to
use the above dispersion relation when parameterizing the
observed differential count dN/dλwith energy.
In Sect. 5, we pointed out that only a fraction αq/αe ≈

1.4×10−11 of the tachyon flux arriving at the detector is
actually absorbed, so that the measured flux has to be
rescaled with the ratio of electric and tachyonic fine struc-
ture constants. This rescaling applies to γ-ray spectra only,
to frequencies much higher than the 2 keV tachyon mass,
so that the mass-square can be dropped in the tachyonic
dispersion relation. At X-ray energies, we have to rescale
with the respective cross-section ratio, σe(ω)/σq(ω), where
σe is the electromagnetic cross section and σq its tachy-
onic counterpart. At hard-X-ray energies, the detection
mechanism is usually ionization, generating scintillations
in NaI(Tl) and CsI(Na) crystals of phoswich detectors [48,
49], or gas scintillations by ionization of xenon atoms in
proportional counters [50, 51]. Tachyonic ionization cross
sections of hydrogen-like ground states, that can be used
for X-rays as well as γ-rays, have been calculated in [7].
At γ-ray energies, photonic and tachyonic dispersion re-
lations coincide, and the cross-section ratio of the detec-
tion mechanism (such as ionization [52], Compton scat-
tering [53], and pair production [54], the latter two quan-
tified by Klein–Nishina and Bethe–Heitler cross sections)
approaches a constant limit value αe/αq, which amounts
to an overall rescaling of the tachyonic flux amplitude. By
contrast, at X-ray energies, we have to rescale the tachy-
onic flux density with the energy-dependent cross-section
ratio, which affects the shape of the spectral maps.
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