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Abstract

The emission of superluminal quanta (tachyons) by freely propagating particles is scrutinized.
Estimates are derived for spontaneous superluminal radiation from electrons moving close to the
speed of the Galaxy in the microwave background. This is the threshold velocity for tachyon
radiation to occur, a lower bound. Quantitative estimates are also given for the opposite limit,
tachyon radiation emitted by ultra-relativistic electrons in linear colliders and supernova shock
waves. The superluminal energy 0ux is studied and the spectral energy density of the radiation
is derived, classically as well as in second quantization. There is a transversal bosonic and a
longitudinal fermionic component of the radiation. We calculate the power radiated, its angular
dependence, the mean energy of the radiated quanta, absorption and emission rates, as well as
tachyonic number counts. We explain how the symmetry of the Einstein A-coe2cients connects
to time-symmetric wave propagation and to the Wheeler–Feynman absorber theory. A relation
between the tachyon mass and the velocity of the Local Group of galaxies is suggested.
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1. Introduction

We will explore the spontaneous emission of tachyons by uniformly moving sources.
In a relativistic setting such as electrodynamics, freely moving charges do not radiate
and radiating particles slow down by radiation losses. (We will consider point charges
without an internal structure.) Some explanations as to the context are therefore in
order.
When considering superluminal signals, we have to give up relativity or causality,

as Lorentz boosts can change the time order of spacelike connections [1–5]. We will
maintain causality, and model superluminal signals in an absolute spacetime as deGned
by the expanding galaxy grid, the rest frame of the microwave background. We may
try a wave theory or a particle picture as the starting point. The latter has been studied
for quite some time but did not result in viable interactions of tachyons with matter
[6–9]. So we suggest to model tachyons as wave Gelds with negative mass-square,
coupled by minimal substitution to subluminal particles.
Whatever the speciGcs of the superluminal wave equation, there is only one Green

function supported outside the light cone; it is time symmetric, half-retarded, half-
advanced. To achieve fully retarded wave propagation, an absorber is needed, capable
of turning advanced modes into retarded ones [10–15]. A causal theory of superluminal
signals requires an absolute space, quite independently of the actual mechanism of
signal transfer. On this basis we can identify space itself as the absorber medium, the
ether, the medium of wave propagation [16].
Having settled for a wave theory, we have to deGne the interaction of the superlu-

minal modes with matter. This is the crucial point; after all, what else can one expect
from a theory of tachyons other than suggestions as to where to search for them?
We will maintain the best established interaction mechanism, minimal substitution, by
treating tachyons as a sort of photons with negative mass-square, a real Proca Geld
minimally coupled to subluminal particles [17,18]. Although great care is taken to
maintain the analogy to electrodynamics, there are some basic diKerences. There is
no gauge freedom but there is longitudinal radiation, even more pronounced than the
transversal counterpart, due to the mass term in the wave equation. More importantly,
this is not only a theory of superluminal wave motion, but also a theory of the abso-
lute cosmic spacetime, this cannot be disentangled. The universal frame of reference
is generated by the galaxy grid; it is the rest frame of the ether, the absorber medium,
as well as the rest frame of the cosmic background radiations [19,20]. Uniform motion
and rest are distinguishable states, and in this context we will show that freely moving
charges can radiate superluminal quanta. They even do so without slowing down, as
the radiated energy is drained from the absorber, from the oscillators of the ether.
Superluminal radiation by inertial charges is but a manifestation of the absolute nature
of space.
In Section 2 we will derive the superluminal power radiated by a classical point

charge in arbitrary motion. We will discuss transversal and longitudinal radiation, its
angular dependence, time symmetry outside the lightcone, the absorber Geld, retarda-
tion, and tachyonic Li=enard–Wiechert potentials [21,22]. In Section 3, we specialize
to uniformly moving charges and calculate the transversal and longitudinal spectral
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densities. In Section 4 these densities are quantized, and we discuss their asymptotic
limits with respect to the speed of the radiating charge. We Gnd a threshold velocity, a
lower bound on the speed of the source, for tachyon radiation to occur. This is a pure
quantum eKect absent in the classical theory. This threshold happens to numerically
coincide with the speed of the Galaxy in the microwave background, which suggests a
connection between the tachyon mass and the velocity of the Local Group of galaxies
in the ether,

vLG
c

≈ 1
2

mt

m
: (1.1)

Here, vLG=c ≈ 2:10 × 10−3 is inferred from the temperature dipole anisotropy of the
microwave background [23], and the electron–tachyon mass ratio mt=me ≈ 1

238 is de-
rived from Lamb shifts in hydrogenic ions [18]. At the end of Section 4, we derive
estimates for superluminal radiation (spectral range, power, tachyonic mean energy and
number counts, spectral maxima) by electrons in linear colliders and supernova shocks;
in this way illustrating the three asymptotic regimes, that is, the ultra-relativistic limit,
the non-relativistic limit, and the extreme non-relativistic limit close to the thresh-
old velocity (1.1). In Section 5, we calculate the tachyonic emission rates for freely
moving electrons in second quantization, in particular the Einstein A-coe2cients for
spontaneous emission [24]. The symmetry of the A-coe2cients is linked to the spon-
taneous absorption of absorber quanta balancing the spontaneous tachyon emission. In
Section 6, the conclusion, we further discuss radiation by inertial charges, the underly-
ing spacetime concept, the ether, the absorber theory, and compare with the relativistic
spacetime view.

2. Superluminal radiation �elds, their energy, and the power radiated

The Proca equation [17] with negative mass-square, F	

;
−m2

t A
	=c−1j	, can equiv-

alently be written as ( +m2
t )A	=−c−1j	, subject to the Lorentz condition A	

;	=0. The
sign conventions for tachyon mass and Geld tensor are mt ¿ 0 and F	
 = A
;	 − A	;
,
for metric and d’Alembertian, �	
=diag(−c2; 1; 1; 1) and =�	
9	9
, respectively. The
tachyon mass mt has the dimension of an inverse length, being a shortcut for mtc=˝.
We Gnd mt=me ≈ 1

238 , estimated from Lamb shifts in hydrogenic systems [18]. The
Lagrangian and the energy–momentum tensor of the free Proca Geld read

LP =− 1
4 F��F�� + 1

2 m2
t A�A�; T 


	 =−F�	F�
 + m2
t A	A
 − �


	LP ; (2.1)

and the above Geld equations follow from L= LP + c−1A�j�. The tachyonic E and B
Gelds are related to the vector potential by

Ei = c−1Fi0 = c−1(∇A0 − 9A=t); Fij = �ijkBk ;

Bk = (1=2)�kijFij = rotA; A� = (A0;A) ; (2.2)
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so that F��F�� =−2(E2 − B2). The Geld equations decompose into

divB= 0; rotE+ c−19B=9t = 0 ;

divE= �− c−1m2
t A0; rotB− c−19E=9t = c−1j+ m2

tA ; (2.3)

where we identiGed j	 = (�; j). The Lorentz condition c−29A0=9t = divA apparently
follows from the Geld equations and current conservation, 9�=9t+div j=0. The vector
potential is completely determined by the current and the E and B Gelds, there is no
gauge freedom due to the tachyon mass.
We represent the spatial component of the vector potential as A(x; t) = (2�)−1∫ +∞

−∞ Â(x; !)e−i!t d!, Â∗(x; !) = Â(x;−!), and the same relations hold for the time
component, the charge and current densities, and the E and B Gelds. We consider tachy-
onic charges, by deGnition subluminal, located in the vicinity of the coordinate origin.
The charges should be conGned to a bounded region, so that we can use their asymp-
totic Gelds when calculating the energy 0ux radiated through a large sphere centered at
the origin. In the subsequent example of uniformly moving charges, cf. Section 3, we
will show how to circumvent this restraint by time averaging. The asymptotic radiation
Gelds can be decomposed into transversally and longitudinally polarized components
ÂT;L. To this end, we deGne ĵT(x′; x; !) := ĵ(x′; !)− n(n · ĵ(x′; !)) and ĵL(x′; x; !) :=
n(n · ĵ(x′; !)), with n = x=r, and Gnd

ÂT;L(x; !) ∼ 1
4�cr

exp(ik(!)r)ĴT;L(x; !); k(!) := sign(!)
√

!2=c2 + m2
t ;

(2.4)

ĴT;L(x; !) :=
∫

dx′ ĵT;L(x′; x; !)exp(−ik(!)n · x′) : (2.5)

This is completely general, there are no speciGc assumptions on the current, other than
being localized in the vicinity of the coordinate origin, a bounded domain, that is.
A discussion of superluminal Green functions and the derivation of (2.4) is given in
Ref. [16]. The only classical Green function outside the lightcone is time-symmetric,
half-retarded, half-advanced. Its convolution with the current results in a time-symmetric
vector Geld Âsym = 1

2 Â
ret + 1

2 Â
adv, where Âret stands for ÂT or ÂL, and the advanced

Geld Âadv is likewise given by (2.4) with the substitution k(!) → −k(!). An absorber
medium, the ether, is needed to cancel the advanced component of Âsym and to supply
the missing half of the retarded Geld [12]. The oscillators of the ether [16,20] generate
the absorber Geld, Âabs = 1

2 Â
ret − 1

2 Â
adv, which, when added to Âsym, results in the

fully retarded ÂT;L in (2.4). In short, the retarded potential is a superposition of the
time-symmetric Geld of the radiating particle and the absorber Geld. This is a crucial
diKerence to electromagnetic radiation based on a retarded Green function. There is
no radiation damping resulting from spontaneous tachyon radiation, since the energy
balance for the time-symmetric Geld is zero; every outgoing mode has an incoming
counterpart. The radiated energy stems from the absorber Geld, from the oscillators of
the ether. The Lorentz force of the absorber Geld may be compared to inertia, and
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the derivation of the absorber Geld from the oscillators of the ether reminds us of the
Mach principle, the attempt to extract the inertial force from the galaxy background.
In both cases, the result is known beforehand, whatever the derivation.
The Fourier transforms of the Geld strengths and the time component of the

4-potential are readily calculated by making use of (2.2), (2.4) and the Lorentz con-
dition, i!Â0(x; !) =−c2 div Â(x; !). The polarized components read in leading order

ÊT(x; !) ∼ i
4�rc2

! exp(ik(!)r)ĴT(x; !) ;

B̂T(x; !) ∼ i
4�rc

k(!) exp(ik(!)r)n × ĴT(x; !); ÂT
0 (x; !) = O(r−2) ;

ÊL(x; !) ∼ −i
4�r

m2
t

!
exp(ik(!)r)ĴL(x; !); B̂L(x; !) = O(r−2) ;

ÂL
0 (x; !) ∼ − c

4�r
k(!)
!

exp(ik(!)r)n · ĴL(x; !) : (2.6)

The real-time Geld strengths ET;L(x; t) and BT;L(x; t) relate to these Fourier transforms
as deGned after (2.3), and so does the zero component of the 4-potential, AT;L

0 (x; t).
To illustrate the meaning of the integral transform ĴT;L deGned in (2.5), we consider

a subluminal particle x0(t), v= ẋ0, arbitrarily moving in the vicinity of the coordinate
origin. The particle carries a tachyonic charge q, resulting in the current density

j0 = �= q�(x− x0(t)); j= qv�(x− x0(t)) ;

�̂(x; !) = q
∫ +∞

−∞
�(x− x0(t))ei!t dt; ĵ(x; !) = q

∫ +∞

−∞
v(t)�(x− x0(t))ei!t dt :

(2.7)

We use the shortcuts vT(x; t) := v− n(n · v) and vL(x; t) := n(n · v), and write (2.5) as

ĴT;L(x; !) = q
∫ +∞

−∞
dt vT;L(x; t) exp[i(!t − k(!)n · x0(t))] : (2.8)

The asymptotic Li=enard–Wiechert potentials and the corresponding Geld strengths are
given by (2.4) and (2.6) with this ĴT;L inserted.
We turn to the energy density and the 0ux vector, which can be read oK from (2.1)

and (2.2),

T 0
0 = (1=2)(E2 + B2)− (m2

t =2)(c
−2A2

0 + A2) ;

T m
0 = cE× B+ m2

t A0A : (2.9)

Thus we Gnd the transversal and longitudinal densities and the corresponding energy
0ux as

�T
E(x; t) ∼ (1=2)(ET2

+ BT2 − m2
tA

T2
); ST ∼ cET × BT ; (2.10)
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�L
E ∼ m2

t

2
(AL2

0 + AL2
)− 1

2
EL2

; SL ∼ −m2
t A

L
0A

L ; (2.11)

with the asymptotic Gelds (2.4) and (2.6) inserted. We have identiGed (�T
E;S

T) with
T 	
0 , and (�L

E;S
L) stands for −T 	

0 , so that the time-averaged densities are positive
deGnite in either case. The averaging is readily carried out by means of the Fourier
modes listed in (2.4) and (2.6). We Gnd for the respective products of the transversal
modes

1
T

∫ +T=2

−T=2
(AT2

;ET2
;BT2

; c(ET × BT))(x; t) dt

=
1

4(2�)4c2r2
2�
T

∫ ∫ +∞

−∞
�(1)(!− !′;T )ĴT(x; !)ĴT∗(x; !′)

×
(
1;

!2

c2
; k2(!); !k(!)n

)
d! d!′ : (2.12)

The superscript T always stands for ‘transversal’ and is not to be confused with the time
variable. In the integrand, we have already put !=!′ at several places, to save notation.
The integral transform ĴT of the current can be singular, cf. (2.7) and Section 3,
and therefore, we refrain from this identiGcation in ĴT∗. A limit representation of the
Dirac function,

�(1)(!;T ) :=
1
2�

∫ +T=2

−T=2
ei!t dt =

1
�
sin(T!=2)

!
;

(2�=T )(�(1)(!;T ))2 =: �(2)(!;T ); �(1;2)(!;T → ∞) = �(!) ; (2.13)

will be used to avoid ill-deGned squares of � functions. According to (2.10), the
time-averaged transversal 0ux and the energy density can be written as

〈ST〉 ∼ c
1
T

∫ +T=2

−T=2
ET × BT dt;

〈
�T
E

〉 ∼ 1
T

∫ +T=2

−T=2
ET2

dt ; (2.14)

where we insert the Fourier representations (2.12) to obtain

〈ST〉 ∼ n
4(2�)4c2r2

2�
T

∫ ∫ +∞

−∞
!k(!)�(1)(!− !′;T )

× ĴT(x; !)ĴT∗(x; !′) d! d!′ ; (2.15)

and analogously for
〈
�T
E

〉
. The longitudinal averages, cf. (2.4) and (2.6),

1
T

∫ +T=2

−T=2
(AL2

; AL2

0 ;EL2
; AL

0A
L)(x; t) dt

=
1

4(2�)4c2r2
2�
T

∫ ∫ +∞

−∞
d! d!′�(1)(!− !′;T ) ĴL(x; !) ĴL∗(x; !′)
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×
(
1;

c4k2(!)
!2 ;

m4
t c

2

!2 ;−nc
2k(!)
!

)
; (2.16)

are substituted into

〈SL〉 ∼ −m2
t
1
T

∫ +T=2

−T=2
AL
0A

L dt;
〈
�L
E

〉 ∼ m2
t
1
T

∫ +T=2

−T=2
AL2

dt; (2.17)

cf. (2.11), and we arrive at

〈SL〉 ∼ m2
t n

4(2�)4r2
2�
T

∫ ∫ +∞

−∞
!−1k(!)�(1)(!− !′;T ) ĴL(x; !) ĴL∗(x; !′) d! d!′ :

(2.18)

The radiant power is obtained by integrating the 0ux through a sphere of radius r → ∞,

P = PT + PL; PT;L := r2
∫

n · 〈ST;L〉 d ; (2.19)

with the solid angle element d = sin ! d! d’. Here, we use the asymptotic Pointing
vectors (2.15) and (2.18), with the transforms ĴT;L of the current as deGned in (2.5)
or (2.8). This is applicable to any type of particle motion.
In Section 4, we will replace the classical current in the above formulas by cur-

rent matrices, appealing to the correspondence principle. To this end, we assume the
classical current to consist of a single Fourier mode !mn:

jmn(x; t) := j̃(x; !mn)e−i!mnt + c:c:; �mn(x; t) := �̃(x; !mn)e−i!mnt + c:c: ;

(2.20)

so that i!mn�̃(x; !mn) = ∇j̃(x; !mn), with an arbitrary j̃. (The subscript mn is chosen
for future reference.) We deGne the truncated Fourier transform

ĵmn(x; !) :=
∫ +T=2

−T=2
jmn(x; t)ei!t dt

= 2��(1)(!− !mn;T )j̃(x; !mn) + 2��(1)(!+ !mn;T )j̃∗(x; !mn) :

(2.21)

Such truncations result in smooth limit representations of the � function, cf. (2.13),
which admit unambiguous squares. The d! and d!′ integrations in (2.15) and (2.18)
get trivial for large T , if we use ĴT;L in (2.5) with the current (2.21) inserted. We
thus Gnd the radiant powers, cf. (2.19):

PT(!mn) =
1

8�2c2
!mnk(!mn)

∫
r→∞

|J̃T(x; !mn)|2 d ; (2.22)

PL(!mn) =
m2

t

8�2

k(!mn)
!mn

∫
r→∞

|J̃L(x; !mn)|2 d : (2.23)
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We have deGned here, cf. (2.5),

J̃ T;L(x; !mn) :=
∫

dx′ j̃ T;L(x′; x; !mn) exp(−ik(!mn)n · x′) ; (2.24)

with j̃ T := j̃(x′; !mn)− j̃ L and j̃ L := n(n · j̃(x′; !mn)), where n := x=r. The longitudinal
current transform J̃L(x; !mn) in (2.24) depends on the tachyonic charge density only.
To see this, we use the identity

knj̃ L(x′; x; !mn) exp(−ikn · x′) = !mn�̃(x′; !mn) exp(−ikn · x′); (2.25)

valid up to a divergence; this is a consequence of current conservation as stated after
(2.20). Hence,

J̃L(x; !mn) = n!mnk−1(!mn)
∫

dx′�̃(x′; !mn) exp(−ik(!mn)n · x′) : (2.26)

Formulas (2.22) and (2.23) for the radiant power are exact; there is no multipole
expansion involved. (We will return to them in Sections 4 and 5, when quantizing.) The
same holds for the power derived in (2.19) (with the asymptotic 0ux vectors (2.15) and
(2.18) substituted), which is completely general, applying to any conserved current. In
the next section we will work out the simplest example, radiation by uniformly moving
charges.

3. Does a uniformly moving charge radiate?

We turn to the conceptually most interesting case, superluminal radiation emitted by
uniformly moving charges. We derive here the classical theory, the Grst and second
quantization will be carried out in the subsequent sections. We consider a tachyonic
charge q, moving along the z-axis, z= vt, 06 v¡c, so that ne3 = cos !, n= x=r. The
integral transform (2.8) of the transversal and longitudinal current projections is easily
calculated:

ĴT(x; !) = qv(e3 − cos ! n)J̃ (!; !); ĴL(x; !) = qv cos !n J̃ (!; !) ;

J̃ (!; !) :=
∫ +T=2

−T=2
dt exp[it(!− k(!)v cos !)] = 2��(1)(!− k(!)v cos !;T ) ;

(3.1)

where k(!) is negative for negative !, cf. (2.4), and �(1)(!;T ) is deGned in (2.13).
We have restricted the trajectory to a Gnite time interval [ − T=2; T=2], so that the
asymptotic formulas (2.4) and (2.6) apply, also compare (2.21). The time-averaged
transversal Pointing vector is readily assembled, cf. (2.15):

〈ST〉 ∼ nq2 sin2 !
4(2�)4r2

v2

c2
2�
T

∫ ∫ +∞

−∞
!k(!)�(1)(!− !′;T ) J̃ 2(!; !) d! d!′ :

(3.2)
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By making use of (2.13) and

�(!− k(!)v cos !) =
'(cos !)

1− (v2=c2) cos2 !
(�(!− !+) + �(!− !−)) ;

!± := ± mtv cos !√
1− (v2=c2) cos !

; !± = k(!±)v cos ! ; (3.3)

we may write this as

〈ST〉 ∼ nq2

2(2�)2r2
v2

c2
!+k(!+) sin2 !
1− (v2=c2) cos2 !

'(cos !) : (3.4)

The argument of the � function in (3.3) can only get zero for cos !¿ 0, therefore the
Heaviside function '(cos !). In (3.2), the limit T → ∞ can be performed without
compromising the asymptotics in (2.4). In this limit, the singular accelerations in0icted
by the artiGcial, but technically convenient discontinuous truncation in (3.1) do not
show in the time averages. We thus Gnd the transversally radiated power, cf. (2.19)
and (3.4):

PT =
q2

4�
m2

t v
3

c2

∫ �=2

0

cos ! sin3 !
(1− (v2=c2) cos2 !)2

d!

=
1
2

q2

4�
m2

t c
2

v

(
log

1
1− v2=c2

− v2

c2

)
: (3.5)

The spectral energy density is identiGed by a variable change according to (3.3):

pT(!) :=
q2

4�
m2

t v
!(1− !2=!2

max)
!2 + m2

t c2
; PT =

∫ !max

0
pT(!) d! ; (3.6)

with !max := mtv) as the highest frequency radiated. The tachyon mass mt is a shortcut
for mtc=˝ and ) is the subluminal Lorentz factor (1 − v2=c2)−1=2, so that !max is just
an mt=m fraction of the electron energy. Another way to obtain the spectral density
is to insert (3.2) and (3.1) into (2.19), and to perform the d!′ integration as above,
followed by the angular integration:

PT =
1
2

q2

4�
v2

c2

∫ +∞

−∞

∫ +1

−1
d cos ! sin2 !�(!− k(!)v cos !)!k(!) d!

=
q2

4�
v
c2

∫ !max

0
(1− !2k−2v−2)! d!; k(!max)v= !max : (3.7)

This derivation is simpler, but conceals the angular dependence, explicit in (3.4).
The longitudinal 0ux is calculated via (2.18)

〈SL〉 ∼ nm2
t q

2v2 cos2 !
4(2�)4r2

2�
T

∫ ∫ +∞

−∞
!−1k(!)�(1)(!− !′;T )J̃ 2(!; !) d! d!′ ;

(3.8)
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which can be evaluated in the same way as (3.2), resulting in

〈SL〉 ∼ nq2m2
t

2(2�)2r2
v cos !

1− (v2=c2) cos2 !
'(cos !) : (3.9)

We thus Gnd the longitudinal power

PL =
q2

4�
m2

t v
∫ �=2

0

cos ! sin !
1− (v2=c2) cos2 !

d!=
1
2

q2

4�
m2

t c
2

v
log

1
1− v2=c2

; (3.10)

which in turn leads to the spectral density

pL(!) :=
q2

4�
1
v
m2

t c
2 !
!2 + m2

t c2
; PL =

∫ !max

0
pL(!) d! ; (3.11)

with !max deGned after (3.6). Alternatively, we may interchange the d! and the angular
integrations as done in (3.7).

PL =
1
2

q2

4 �
m2

t v
2
∫ +∞

−∞

∫ +1

−1
d cos ! cos2 !�(!− k(!)v cos !)k(!)!−1 d!

=
q2

4�
m2

t

v

∫ !max

0
!k−2 d! ; (3.12)

which coincides with (3.11). Flux vector and energy density relate in the usual way,

〈ST;L〉=
〈
�T;L
E

〉
vgrn, with vgr=c2=vph, and vph=v cos !. There is no backward radiation,

that is, for cos !6 0. In the limit ! → �=2, the emitted tachyons approach inGnite
speed and zero energy. Radiation angle and frequency relate via ! = k(!)v cos !. To
restore the units, we have to substitute mt → mtc=˝ in the above formulas. A detailed
discussion of the spectral densities and powers will be given in the next section, after
quantization. The classical formulas derived here are only valid if v=c�mt=m. The
Planck constant does not show in this constraint; however, the tachyon mass already
enters in the classical Geld equations by the combination mtc=˝, cf. the beginning of
Section 2.

4. Quantization of the superluminal spectral densities and the radiant power

We will investigate how far quantization modiGes the classical picture given in
Section 3, tachyon radiation by a structureless particle in uniform motion. To derive
the quantized version of the spectral densities (3.6) and (3.11), we replace the classical
current by the current matrix of a subluminal quantum particle carrying tachyonic
charge as outlined at the end of Section 2. In doing so, we assume the correspondence
principle; in Section 5, we will demonstrate that the spectral densities and powers
calculated in this way can be recovered from the spontaneous emission rates in second
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quantization. We will not consider spin or antiparticles, and content ourselves with
positive frequency solutions of the Klein–Gordon equation. The inclusion of spin is
interesting if the electron orbits in a magnetic Geld, resulting in tachyonic cyclotron
and synchrotron radiation, but there are otherwise no conceptual changes, the current
being replaced by the matrix elements of the spinor current followed by polarization
averages.
We start with the Klein–Gordon equation of a subluminal particle, c−2 ; tt −V +

m2 = 0, where m is a shortcut for mc=˝. We deGne the 4-current functionals

�( ; ’) := iq(’∗ ; t −  ’∗
; t); j( ; ’) := −iqc2(’∗∇ −  ∇’∗) ; (4.1)

and note the continuity equation �;t+div j=0, where  and ’ are arbitrary solutions of
the wave equation. We use the separation ansatz  i=ui exp(−i!it), !i ¿ 0, and deGne
the shortcuts �mn := �( m;  n) and jmn := j( m;  n), as well as �mn =: �̃mn exp(−i!mnt)
and jmn =: j̃mn exp(−i!mnt), with !mn := !m − !n. We hence Gnd the time-separated
wave equation Vui = (m2 − c−2!2

i )ui, as well as the Hermitian current matrices

�̃mn = q(!m + !n)umu∗n ; j̃mn =−iqc2(u∗n∇um − um∇u∗n) : (4.2)

We consider periodic boundary conditions on a box of size L and conveniently nor-
malized eigenfunctions:

ui = (2!i)−1=2L−3=2 exp(ikix);
∫
L3

�̃mn d3x = q�mn ; (4.3)

with ki = 2�ni=L and ni ∈Z3. The frequencies depend on the wave vectors via the
subluminal dispersion relation k2i = !2

i =c
2 − m2. The current matrices �̃mn and j̃mn in

(4.2) are composed with the ui in (4.3), and we substitute them into (2.24) and (2.26)
(where all spatial integrations extend over the box size):

J̃T(x; !mn) =
qc2√
!m!n

(2�)3

L3 (km − n(nkm))�(1)(Kmn;L) ; (4.4)

J̃L(x; !mn) =
q!mn(!m + !n)
2k(!mn)

√
!m!n

(2�)3

L3 n�(1)(Kmn;L) ; (4.5)

Kmn := km − kn − k(!mn)n; n := x=r:

Here, �(1)(k;L) is the three-dimensional analog to the truncated integral representation
of the � function in (2.13); the limit procedure outlined there has likewise an obvious
3-d generalization by factorization, which we use when squaring these J̃T;L in the
integrands of the classical powers (2.22) and (2.23):

PT =
q2c2

8�2

(2�)3

L3

!mnk(!mn)
!m!n

∫
d (k2m − (nkm)2)�(1)(Kmn;L) ; (4.6)

PL =
q2m2

t

32�2

(2�)3

L3

!mn(!m + !n)2

k(!mn)!m!n

∫
d �(1)(Kmn;L) : (4.7)
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The solid angle integration refers to the unit vector n and is easily done by means of
the substitution

∫
|n|=1 d → 2

∫
R3 d3n�(n2 − 1). Hence,

PT =
q2c2

4�2

(2�)3

L3

!mn(k2mk
2
n − (kmkn)2)

!m!nk2(!mn)
�((km − kn)2 − k2(!mn)) ; (4.8)

PL =
q2m2

t c
4

16�2

(2�)3

L3

(k2m − k2n )
2

!mn!m!nk2(!mn)
�((km − kn)2 − k2(!mn)) : (4.9)

The total power radiated is obtained by summing over the Gnal states and performing
the continuum limit:

PT;L
tot (km) =

∑
kn

PT;L(km; kn); dPT;L
tot = L3(2�)−3PT;L d3kn : (4.10)

We introduce polar coordinates for kn, with km as polar axis, and integrate dPT;L
tot over

the angular variables. This is easily done by means of the � functions in (4.8) and
(4.9), if we replace d3kn with 2�k2ndkn

∫ 1
−1 d cos !. We thus obtain

dPT
tot =

q2c2

16�
!mnDmn

!m!nkmk2(!mn)
'(Dmn)kn dkn ; (4.11)

dPL
tot =

q2m2
t c

4

16�
(k2m − k2n )

2

!mn!m!nkmk2(!mn)
'(Dmn)kn dkn ; (4.12)

Dmn := 4k2mk
2
n − (k2m + k2n − k2(!mn))2 ; (4.13)

where ' is the Heaviside function. The tachyonic wave vector relates to the subluminal
frequencies by k(!mn) =

√
!2

mn=c2 + m2
t , with !mn =!m −!n. The dispersion relation

for the subluminal charge is kn=
√

!2
n=c2 − m2, and the same for km and !m. The initial

state is denoted by a subscript m, the Gnal state by n, so that for emission !mn ¿ 0.
This designation of ‘initial’ and ‘Gnal’ is arbitrary, just for the purpose of deGning the
radiation modes. By making use of the dispersion relations, we write Dmn as a function
of !mn:

Dmn = 4
m2

c2

(
m2

t

m2 (!
2
m − !2

0)−
m2

t

m2 !m!mn − !2
mn

)
; (4.14)

with !0 := mc
√
1 + 1

4m
2
t =m2. There are two zeros, Dmn(!±

mn) = 0, where

!±
mn =±km!0

m
mt

m
− !m

2
m2

t

m2 : (4.15)

Emission means !mn ¿ 0, thus we can ignore the negative root and we will write
!max(!m) for !+

mn. It is easy to see that !max is positive only if !m ¿!0, cf. (4.14),
and !max(!0) = 0. Clearly, !m¿mc from the outset. It is likewise evident that
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Dmn(!mn)¿ 0 for 0¡!mn ¡!max and negative for larger frequencies. If !m ¡!0,
then '(Dmn(!mn)) in (4.11) and (4.12) vanishes for all !mn ¿ 0, and hence !m ¿!0

is a necessary condition for the emission of superluminal quanta. The spectral range is
0¡!mn ¡!max, deGned by '(Dmn) = 1.
The total power radiated is PT;L

tot =
∫ km
0 dPT;L

tot (kn), cf. (4.11) and (4.12). To obtain the
frequency distributions, we introduce !mn as integration variable. Using the dispersion
relation for kn, we Gnd !n d!mn=−c2kn dkn and PT;L

tot =− ∫ !m−mc
0 dPT;L

tot (!mn). Finally,
!max(!m)6!m − mc for !m ¿!0, which is easily seen from (4.15). (There is a
double zero at !m = mc(1 + 1

2m
2
t =m

2).) Thus we can replace the upper integration
boundary by !max and drop '(Dmn) in (4.11) and (4.12). We write in the following
! for !mn, and deGne the densities pT;L(!) d! := −dPT;L

tot (!mn). We thus Gnd, via the
sub- and superluminal dispersion relations as stated after (4.13), the transversally and
longitudinally radiated powers, the number counts, and the respective spectral functions:

PT;L
tot =

∫ !max

0
pT;L(!) d!; NT;L

tot = ˝−1
∫ !max

0
pT;L(!)!−1 d! ; (4.16)

!max :=
√

!2
m − m2c2

!0

mc
mt

m
− 1

2
!m

m2
t

m2 ;
!0

mc
:=

√
1 +

1
4

m2
t

m2 ; (4.17)

pT (!) =
q2

4�
m2

t

!mkm

!
!2 + m2

t c2
(!2

m − !2
0 − !m!− (m=mt)2!2) ; (4.18)

pL(!) =
q2

4�
m2

t

!mkm

!
!2 + m2

t c2
(!2

m − !m!+ 1
4!

2) ; (4.19)

where km=c−1
√

!2
m − m2c2. The upper edge !max of the spectral range is positive only

if !m ¿!0. Spontaneous emission can only occur if the subluminal source surpasses
a Gnite threshold energy !0. This is unparalleled in the classical radiation theory,
cf. Section 3.
At the upper edge of the spectrum, we have pT(!max) = 0, cf. (4.14) and (4.15),

but the longitudinal density pL(!) is still positive at !max. It may even happen that
the integration in (4.16) is cut oK before the maximum of pL(!) is reached, so that
pL(!) is increasing throughout the spectral range, cf. the discussion following (4.26).
The tachyonic mean energy is ˝!T;L

av := PT;L
tot =NT;L

tot , the emission rates NT;L
tot (tachyons

per unit time) are deGned in (4.16). To get the dimensions right in (4.17)–(4.19), we
still have to rescale the masses, m(t) → m(t)c=˝. The integrals in (4.16) are elementary,
and we Gnd the total transversally emitted power and the transversal count rate as

PT
tot =

�q
2

[(
!2

m

m2c2
− 1

4
m2

t

m2

)
log
(
1 +

!2
max

m2
t c2

)

− !2
max

m2
t c2

+ 2
!m

mc
mt

m

(
arctan

!max

mtc
− !max

mtc

)]
;
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NT
tot =

�q
mtc˝

[(
!2

m

m2c2
− 1

4
m2

t

m2

)
arctan

!max

mtc

− !max

mtc
− 1

2
!m

mc
mt

m
log
(
1 +

!2
max

m2
t c2

)]
: (4.20)

Here, !max is the break frequency deGned in (4.17), the power scale is set by

�q :=
q2

4�c
mc
!m

m2
t c

2√
!2

m=(mc)2 − 1
; (4.21)

and 0¡ arctan¡�=2. The longitudinal power and count rate are

PL
tot = PT

tot +
�q
2

!2
0

m2c2
!2

max

m2
t c2

; NL
tot = NT

tot +
�q

mtc˝
!2

0

m2c2
!max

mtc
; (4.22)

with !0 deGned in (4.17).
For the rest of this section, we will study asymptotic limits of the spectral densities,

powers and number counts derived above. There are three asymptotic regimes giving
a comprehensive picture of the radiation. To see this, we introduce the shortcut � :=√

1− !2
0=!2

m and write !m = mc), with the subluminal ) = (1 − v2=c2)−1=2. Since
!m ¿!0, we have apparently �¡ 1 or

v¿vmin :=
1
2

mtc2

!0
; )min := )(vmin) =

!0

mc
; (4.23)

which is equivalent to !max ¿ 0. The velocity v refers to the subluminal particle.
Condition (4.23) deGnes the threshold velocity vmin for tachyon radiation. To Ggure
out the asymptotic regimes of the spectral functions with regard to v, we parametrize
!max and !m with �:

!max =
mt

m
!0√
1− �2

(√
�2 +

1
4

m2
t

m2 − 1
2

mt

m

)
; !m =

!0√
1− �2

: (4.24)

It is evident that !max ¡!mmt=m. If �2�m2
t =m

2�1, which deGnes the extreme non-
relativistic regime, we Gnd !max ≈ mc�2. In the non-relativistic limit, m2

t =m
2��2�1,

we Gnd !max ≈ mtc�. In the ultra-relativistic regime, with �2 ≈ 1 (and m2
t =m

2�1),
we Gnd !max ≈ mtc(1 − �2)−1=2. This is to be compared to !m ≈ mc in the two
non-relativistic regimes, and to !m ≈ mc(1− �2)−1=2 in the ultra-relativistic limit. (All
these estimates are meant as leading orders in asymptotic double series expansions.)
The extreme non-relativistic limit only applies to a very narrow velocity range, to
velocities close to the threshold vmin, which is evident from )= (1− �2)−1=2)min.

We can now compare the foregoing to the classical radiation theory of Section 3.
The upper edge of the spectrum, !max in (4.24), coincides with its classical counterpart
deGned after (3.6) in the limit m2

t =m
2��2. This is the condition for the classical theory

to apply. In this limit we can apparently identify � ≈ v=c, and it is also evident that
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!m�!max (where !max is the highest frequency radiated, and !m is the energy of the
source). In the transversal spectral density (4.18), we may therefore replace !0 by mc
and drop the subsequent term !m!, in this way recovering the classical density (3.6).
The same reasoning applies to the longitudinal density pL(!), which coincides with
the classical formula (3.11) if we drop the !m! and !2=4 terms in (4.19). The powers
(4.20) and (4.22) are turned into the classical ones in (3.5) and (3.10), by discarding
all terms explicitly depending on the mt=m ratio.
The peak frequency of the transversal spectral density pT(!), cf. (4.18), is a zero

of

y4
T +

(
�2 + 3(1− �2)

m2c2

!2
0

)
m2

t

m2 y2
T

+ 2(1− �2)
m2c2

!2
0

m4
t

m4 yT − �2(1− �2)
m2c2

!2
0

m4
t

m4 = 0 ; (4.25)

where yT := !T
peak=!m. We calculate this maximum in the three asymptotic regimes

enumerated above. If �2�m2
t =m

2�1, we can ignore the fourth order in (4.25) as well
as the second, and Gnd !T

peak ≈ mc�2=2, just in the middle of the spectral range. If
m2

t =m
2��2�1, we Gnd, by dropping the fourth and Grst-order terms, !T

peak ≈ mtc�=
√
3,

which is likewise located almost in the center of the frequency range. Finally, in the
ultra-relativistic regime, �2 ≈ 1, we may again drop the Grst- and fourth-order terms
in (4.25), so that the density is peaked at !T

peak ≈ mtc.
The maximum of the longitudinal spectral function (4.19) is found by solving

y4
L −

(
4− 3

m2
t c

2

!2
m

)
y2
L − 8

m2
t c

2

!2
m

yL + 4
m2

t c
2

!2
m

= 0 ; (4.26)

with yL := !L
peak=!m, and we may always assume mtc=!m�1. There are two positive

solutions; the Grst, yL ≈ 2, lies outside the integration range in (4.16), the relevant one
is !L

peak ≈ mtc, stemming from the second and zeroth orders of (4.26). Also this peak
lies beyond !max if �26 1=2, since !max ≈ mtc for �2 ≈ 1=2. Hence, if �26 1=2, then
pL(!) is increasing throughout the spectral range; if �2¿ 1=2, it admits a maximum
at !L

peak ≈ mtc like the transversal density.
We turn to the asymptotic limits of the radiant powers and the count rates in (4.20)

and (4.22). In the extreme non-relativistic regime, �2�m2
t =m

2�1,

PT
tot ∼

1
3

q2

4�c
m
mt

m2c2�6; NT
tot ∼

q2

4�c˝
m
mt

mc�4; !T
av ∼

1
3
mc�2 ;

PL
tot ∼

q2

4�c
m
mt

m2c2�4; NL
tot ∼ 2

q2

4�c˝
m
mt

mc�2; !L
av ∼

1
2
mc�2 : (4.27)

In the non-relativistic limit, m2
t =m

2��2�1,

PT
tot ∼

1
2

q2

4�c
m2

t c
2�3; NT

tot ∼
q2

4�c˝ mtc�2; !T
av ∼

1
2
mtc� ;
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PL
tot ∼

1
2

q2

4�c
m2

t c
2�; NL

tot ∼
q2

4�c˝ mtc; !L
av ∼ !T

av : (4.28)

The non-relativistic mean frequencies !T;L
av are close to the transversal spectral peak

!T
peak. In the extreme relativistic regime, �2 ≈ 1, we Gnd

PT
tot ∼

1
2

q2

4�c
m2

t c
2
(
log

1
1− �2

− 1
)

; NT
tot ∼

�
2

q2

4�c˝ mtc ;

!T
av ∼

1
�
mtc

(
log

1
1− �2

− 1
)

; (4.29)

and the same formulas for the longitudinal radiation with the −1 after the log-terms
dropped. The parameter � deGning the three asymptotic regimes has been introduced
after (4.22); it relates to the subluminal velocity of the source and the tachyon mass
by

v2

c2
=

�2 + 1
4m

2
t =m

2

1 + 1
4m

2
t =m2

: (4.30)

We still have to rescale the masses, m(t) → m(t)c=˝, in all formulas of this section, and
we deGne the tachyonic Gne structure constant as �q := q2=(4�˝c), which is not to be
confused with the expansion parameter �. We illustrate the quantities listed in (4.27)–
(4.29) with a freely moving electron as source. The electron–tachyon mass ratio is
mt=m ≈ 1=238, resulting in a tachyonic Compton wavelength of ˝=(mtc) ≈ 0:92 WA, and
the quotient of tachyonic and electric Gne structure constants reads �q=�e ≈ 1:4×10−11,
inferred from Lamb shifts in hydrogenic systems [18]. We will use �q ≈ 1:0 × 10−13

and mt ≈ 2:15 keV=c2. The quantities in (4.27)–(4.29) can easily be assembled with
these ratios and mtc2=˝ ≈ 3:27× 1018 s−1.
As an example for the extreme non-relativistic limit (4.27), we assume the electron at

vLG=c ≈ 2:10×10−3, which is the velocity of the Galaxy in the microwave background,
inferred from the dipole anisotropy of the background temperature, cf. the review article
of Smoot and Scott in Ref. [23]. This speed coincides with the threshold velocity vmin

in (4.23), recovered by putting � = 0 in (4.30). This suggests that the velocity of the
Local Group in the ether is linked to the tachyon mass as stated in (1.1). I do not have
a real explanation for that, perhaps it is just a coincidence, but it is most intriguing
indeed that vLG is the speed at which free electrons cease to emit tachyons, cease to
drain energy from the ether.
In the extreme non-relativistic regime, �2�m2

t =m
2 (that is 0¡��10−3), the elec-

tronic speed (parametrized as in (4.30)) is virtually independent of �, and very nearly
coincides with the threshold velocity. We Gnd with the above constants, cf. (4.27):

PT
tot (eV s−1) ≈ 3:1× 1015�6; NT

tot (s
−1) ≈ 1:8× 1010�4;

˝!T
av (eV) ≈ 1:7× 105�2 ;

PL
tot (eV s−1) ≈ 9:4× 1015�4; NL

tot (s
−1) ≈ 3:7× 1010�2;

˝!L
av (eV) ≈ 2:55× 105�2 ;
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˝!max (eV) ≈ 5:1× 105�2; ˝!T
peak (eV) ≈ 2:55× 105�2; (4.31)

and !L
peak ≈ !max. The speed of the radiated quanta at the peak frequencies is readily

found by the Einstein relation, ˝!T;L
peak = mtc2(v2tach=c

2 − 1)−1=2. For � → 0, the peak

frequencies converge to zero, so that vtach=c ≈ mtc2=(˝!T;L
peak) can attain virtually any

value, with modest energy transfer, however. This applies to electrons freely propaga-
ting very close to the speed of the Local Group, vLG ≈ 627 km=s, below this threshold
no tachyons can be emitted in uniform motion.
The normal non-relativistic regime as deGned by (4.28) is covered by 10−3���1;

in this case we may identify � ≈ v=c, cf. (4.30), and Gnd

PT
tot (keV s−1) ≈ 3:5× 105�3; NT

tot (s
−1) ≈ 3:3× 105�2;

˝!T;L
av (keV) ≈ 1:1� ;

PL
tot (keV s−1) ≈ 3:5× 105�; NL

tot (s
−1) ≈ 3:3× 105 ;

˝!max (keV) ≈ 2:15�; ˝!T
peak (keV) ≈ 1:2�; !L

peak ≈ !max : (4.32)

In contrast to the extreme non-relativistic limit, these quantities scale with the particle
speed, and the energy scale of this radiation is, by at least a factor of 103, larger.
Next-generation linear colliders will yield electrons with E≈ 0:5 TeV or )≈

9:785 × 105 and our Grst ultra-relativistic example. In (4.29) we put 1 − �2 ≈ )−2,
and Gnd

PT
tot (GeV s−1) ≈ 9:35; NT;L

tot (s−1) ≈ 5:1× 105; ˝!T
av (keV) ≈ 18:2 ;

PL
tot (GeV s−1) ≈ 9:7; ˝!L

av (keV) ≈ 18:9 ;

˝!max (GeV) ≈ 2:1; ˝!T;L
peak (keV) ≈ 2:15 : (4.33)

The spectral range is much larger than in the previous examples, and the longitu-
dinal spectral density has a genuine maximum coinciding with the transversal peak
frequency; in contrast to the non-relativistic limits, where the longitudinal density is
truncated at the break frequency !max before the peak is reached. The spectral peaks
are not very pronounced, they deviate from the mean frequencies by one order of
magnitude. A further increase of the Lorentz factor does not substantially change the
radiant powers and the number counts in (4.29), although it strongly aKects the shape
of the spectral densities, since !max=!

T;L
peak ∼ ). For instance, electrons shock-accelerated

to E ≈ 200 TeV () ≈ 3:91× 108) in supernova remnants [25–27] radiate

PT
tot (GeV s−1) ≈ 13:6; NT;L

tot (s−1) ≈ 5:1× 105; ˝!T
av (keV) ≈ 26:4 ;

PL
tot (GeV s−1) ≈ 13:9; ˝!L

av (keV) ≈ 27:1 ; ˝!max (TeV) ≈ 0:84;
(4.34)

with ˝!T;L
peak as in (4.33). At this point, one could be tempted to deGne a radiation life-

time, something like E=P. However, tachyon radiation is generated by a time-symmetric
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Green function and an absorber Geld. Contrary to electromagnetic radiation, there is
no deceleration due to radiation loss, the energy spontaneously radiated is contained in
the absorber Geld, supplied by the oscillators of the absorber. In the next section, we
will demonstrate that the classical time symmetry (discussed after (2.5)) has its quantal
counterpart in the symmetry of the Einstein A-coe2cients, the spontaneous emission
being balanced by spontaneous absorption.

5. Spontaneous emission and absorption outside the lightcone: Einstein coe-cients for
free charges

We will study induced and spontaneous radiation in second quantization. A non-
relativistic example to that eKect, tachyonic transitions between bound states in a
Coulomb potential, has already been given in Ref. [24]. Here, we consider tachyon
radiation by freely propagating electrons. In this case, the Einstein coe2cients can be
calculated without multipole approximations. The B-coe2cients re0ect the symmetry
of the induced radiation, however, the A-coe2cients are symmetric as well. In electro-
dynamics, there is no time-symmetric counterpart to spontaneous emission, but outside
the lightcone there is spontaneous absorption, the radiated energy being recovered from
the absorber medium. The Green function is time symmetric, and so is spontaneous
radiation. The spontaneous absorption corresponds to the advanced component of the
classical radiation Geld, cf. Section 2. The quantum statistics of the free tachyon Geld
was studied in Ref. [20], we repeat some formulas needed to compile the matrix ele-
ments of the Hamiltonian. Then we calculate and balance the emission rates for uni-
formly moving charges. Finally we show that the spectral densities (4.18) and (4.19)
derived by means of the correspondence principle survive the second quantization. In
this paper, the Fourier transforms of the dielectric and magnetic permeabilities of the
ether are put equal to one, �̂(!)= 	̂(!)=1, that is, we assume a negligible refractivity
and absorptivity, cf. Ref. [20]. Otherwise we would have to specify more parameters,
apart from the tachyon mass and the tachyonic Gne structure constant.
We start with the plane wave decomposition of the spatial component of the vector

potential

A(x; t) = L−3=2
∑
k

(Â(k) exp(i(kx− !t)) + c:c:); Â(k) :=
3∑

3=1

Uk; 3â(k; 3)

(5.1)

with k := 2�n=L. The summation is over integer lattice points n in R3, corresponding
to periodic boundary conditions in (2.3), so that the L−3=2exp(ikx) are orthonormal and
complete in a box of size L. The Uk;1 and Uk;2 are arbitrary real unit vectors (linear
polarization vectors) orthogonal to Uk;3 := k0 = k=|k|, so that the Uk; 3 constitute an
orthonormal triad for every n. The amplitudes â(k; 3) are arbitrary complex numbers.
The Fourier coe2cients Â0(k) of the time component A0(x; t) of the 4-potential are

deGned as in (5.1), and the same holds for the Geld strengths,

Ê(k) = ic−1(kÂ0(k) + !Â(k)); B̂(k) = ik × Â(k) : (5.2)
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For A to be a solution of (2.3) (with �= 0, j= 0), the dispersion relation,

k2 = !2=c2 + m2
t ; (5.3)

has to be satisGed, which we henceforth assume; ! and k := |k| are positive.
We split the potential and the Geld strengths into transversal and longitudinal com-

ponents:

ÂT(k) :=
∑
3=1;2

Uk; 3â(k; 3); ÂT
0 = 0 ;

ÂL(k) := k0â(k; 3); ÂL
0 (k) =−c2k!−1â(k; 3) ;

ÊT(k) = ic−1!ÂT(k); B̂T = ik × ÂT ;

ÊL =−im2
t c!

−1k0â(k; 3); B̂L = 0 : (5.4)

The amplitudes â(k; 3), 3 = 1; 2; 3, can be arbitrarily prescribed. Time averages of
products such as

∫
L3 E2(x; t) dx, over a period of 2�=!, are readily calculated according

to 〈∫ 56〉=∑k 5̂(k)6̂∗(k) + c:c: We Gnd the spatially integrated and time-averaged
energy T 0

0 and the 0ux vector T m
0 in (2.9) as, cf. (5.4),〈∫

�E

〉
=
〈∫

�T
E

〉
+
〈∫

�L
E

〉
;

〈∫
S
〉
=
〈∫

ST
〉
+
〈∫

SL
〉

;

〈∫
�T
E

〉
:= 2c−2

∑
k;3=1;2

!2ââ∗;
〈∫

ST
〉

:= 2
∑

k;3=1;2

k!ââ∗ ;

〈∫
�L
E

〉
:= −2m2

t

∑
k

â(3)â∗(3);
〈∫

SL
〉

:= −2m2
t c

2
∑
k

k!−1â(3)â∗(3) :

(5.5)

The interference term of the longitudinal and transversal modes vanishes in the aver-
aging procedure. The sign change of the longitudinal components of energy and 0ux,
anticipated in (2.11), will be eKected by Fermi statistics. By comparing the individual
modes in these series, we Gnd〈∫

ST;L
〉
k;3

=
〈∫

�T;L
E

〉
k;3

vgr ; vgr := k0 d!=dk : (5.6)

The group velocity vgr follows from the dispersion relation (5.3), d!=dk=c2k=!, cf. the
discussion after (3.12). We introduce rescaled Fourier coe2cients ak; 3 in the preceding
time averages,

â(k; 3) =: 2−1=2c˝1=2!−1=2ak; 3; â(k; 3) =: 2−1=2˝1=2!1=2m−1
t ak;3 ; (5.7)
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where 3= 1; 2, so that the Geld energy and the 0ux get amendable to statistical inter-
pretation〈∫

�T
E

〉
=
∑

k;3=1;2

˝!kak; 3a∗k; 3;
〈∫

ST
〉
=
∑

k;3=1;2

vgr˝!kak; 3a∗k; 3 ; (5.8)

〈∫
�L
E

〉
=−

∑
k

˝!kak;3a∗k;3;
〈∫

SL
〉
=−

∑
k

vgr˝!kak;3a∗k;3 : (5.9)

These time averages are the starting point for quantization. We sketch here only very
shortly the overall reasoning, for details see Ref. [20]. The Fourier coe2cients ak; 3 are
interpreted as operators, and the complex conjugates a∗k; 3 as their adjoints a+k; 3. We use
commutation relations, [ak; 3, a+k′ ; 3′ ]=�kk′�33′ , for the transversal modes 3=1; 2, which
admit the occupation number representation

ai|n1; : : : ; ni; : : : ; n∞〉=√
ni|n1; : : : ; ni − 1; : : : ; n∞〉 ;

a+i |n1; : : : ; ni; : : : ; n∞〉=
√

ni + 1|n1; : : : ; ni + 1; : : : ; n∞〉 : (5.10)

Anticommutators, [ak;3; a+k′ ;3]+ =�kk′ , are employed for the longitudinal modes, to turn
the longitudinal energy (5.9) into a positive deGnite operator. These Fermi operators
admit the representation

ai|n1; : : : ; ni; : : : ; n∞〉= (−)n¡ini|n1; : : : ; 1− ni; : : : ; n∞〉; n¡i :=
i−1∑
k=1

nk ;

a+i |n1; : : : ; ni; : : : ; n∞〉= (−)n¡i(1− ni)|n1; : : : ; 1− ni; : : : ; n∞〉 ; (5.11)

where the occupation numbers are now restricted to zero and one. The time-averaged
transversal Hamilton operator for the free tachyon Geld and the transversal 0ux
operator are thus given in (5.8), with the Fourier amplitudes ak; 3a∗k; 3 replaced by the
operator product a+k; 3ak; 3. The energy and 0ux operators of the longitudinal radiation
are obtained by the substitution ak;3a∗k;3 → −a+k;3ak;3 in (5.9). The partition function is
easily assembled, the lattice sums being replaced by the continuum limit [28,29], and
we Gnd the spectral densities of the transversal and longitudinal radiations as

�T(!) =
˝

�2c3
!2
√

!2 + m2
t c2

exp(�˝!)− 1
; �L(!) =

˝
2�2c3

!2
√

!2 + m2
t c2

exp(�˝!) + 1
: (5.12)

We turn to the interaction with subluminal matter. As in Section 4, we consider
a spinless quantum particle, a Klein–Gordon Geld coupled to the tachyonic vector
potential by minimal substitution. We write the Lagrangian of the coupled system as
L= LP + L , with the Lagrangian LP of the free Proca Geld as in (2.1), and

L := c−29At  9A∗t  ∗ −∇A ∇A∗ ∗ − (mc=˝)2  ∗ ;

9At := 9t − i(q=˝c)A0; ∇A := ∇− i(q=˝c)A : (5.13)
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The energy density of the free matter Geld reads

H free
 := c−2 ; t ∗

; t +∇ ∇ ∗ + (mc=˝)2  ∗ = c−2( ; t ∗
; t −  ∗ ; tt) ; (5.14)

the second equality is valid up to a divergence, and we used the free Geld equation as
stated before (4.1). The 4-current, the time separation, and the spectral resolution are
given in (4.1)–(4.3). We expand the free Klein–Gordon Geld,  =

√
˝c
∑

n bnune−i!nt ,
with arbitrary complex amplitudes bn, normalized eigenfunctions un, cf. (4.3), and
positive frequencies !n. We thus Gnd the energy of the free Geld, E =

∫
H free

 d3x =∑
n ˝!nbnb∗n , via the orthonormality (4.3). In the 4-current (4.1), we at Grst put ’=  

and then expand the wave Geld, so that

�( ) = ˝c2
∑
m;n

bmb∗n �̃mne−i!mnt ; j( ) = ˝c2
∑
m;n

bmb∗n j̃mne−i!mnt ; (5.15)

with �̃mn and j̃mn deGned in (4.2) and (4.3). The interaction Hamiltonian can be read
oK from the Lagrangian (5.1),

H int
 =

iq
˝c (−c−2A0 ∗ ; t + c−2A0  ∗

; t + A ∗∇ − A ∇ ∗) ; (5.16)

up to terms of O(q2). Hence, by means of (4.1),

H int
 =− 1

˝c3 (A0�( ) + Aj( )) : (5.17)

Here we substitute the Fourier expansions (5.15) as well as those of the tachyon Geld
deGned by (5.1), (5.4) and (5.7). Finally, we replace the bmb∗n in (5.15) by operator
products b+n bm, and the tachyonic Geld amplitudes a(∗)k; 3 by operators a(+)

k; 3 as done af-
ter (5.11) for the free Geld. The subluminal spinless Klein–Gordon Geld is quantized
in Bose statistics, [bm; b+n ] = �mn, so that the representation (5.10) is applicable, and
the (anti)commutator brackets and representations for the tachyonic operators a(+)

k; 3 are
stated in (5.10) and (5.11).
First we study interaction with transversal tachyons. We consider a Gxed linear

polarization 3 (that is, no summation over 3 in the Fourier series). The transversal
component of the interaction Hamiltonian (5.17) reads HT

int := −˝−1c−3ATj( ), where
we substitute the Fourier decompositions (5.1), (5.4), (5.7), and (5.15),∫

HT
int d

3x=− ˝1=2√
2L3=2

∑
m;n;k

b+n bm!
−1=2
k

(
ak; 3

∫
Uk; 3 j̃mneikx d3xe−i(!mn+!k )t

+ a+k; 3

∫
Uk; 3 j̃mne−ikx d3xe−i(!mn−!k )t

)
(5.18)

The amplitudes have been replaced by operators b(+)
i and a(+)

k; 3 as indicated after (5.17).

The transversal a(+)
k; 3=1;2 satisfy Bose statistics. We compile the matrix elements of

(5.18) with an initial state m and a Gnal state n representing a single subluminal
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particle and the absorption or emission of a tachyon of polarization 3,〈
n
∣∣∣∣
∫

HT
int

∣∣∣∣m
〉
abs

=
√
nk〈TT

abs〉e−i(!mn+!k )t ; !mn ¡ 0 ;

〈
n
∣∣∣∣
∫

HT
int

∣∣∣∣m
〉
em

=
√

nk + 1〈TT
em〉e−i(!mn−!k )t ; !mn ¿ 0 ;

〈
TT
abs=em

〉
:= − ˝1=2√

2!1=2
k L3=2

∫
Uk; 3 j̃mne±ikx d3x : (5.19)

The nk are tachyonic occupation numbers for a state of polarization 3. At this point,
k is a discrete lattice vector, cf. (5.1). The 〈TT

abs;em〉 just diKer by a sign change of
the wave vector in the exponential. (The upper sign always refers to absorption.) The
preceding formulas are standard time-dependent perturbation theory with a periodic
potential [30]; the nk-dependent factors stem from the bosonic representation (5.10).
The tachyonic wave vector k relates to the tachyonic frequency !k by the dispersion
relation (5.3); k and !k are positive, and the !mn := !m − !n refer to energy levels
of the free wave equation, cf. (4.3). The initial state will be denoted by a subscript m
and the Gnal state by n, so that a positive !mn stands for emission.
We turn to the longitudinal component of the interaction (5.17), HL

int =HL(1)
int +HL(2)

int ,
where HL(1)

int = −˝−1c−3ALj( ) and HL(2)
int = −˝−1c−3A0�( ), with the Fourier series

for AL and A0 deGned in (5.1), (5.4) and (5.7). We Gnd, analogously to (5.18),∫
HL(1)

int d3x =− ˝3=2√
2mtc2L3=2

∑
m;n;k

b+n bm!
1=2
k

×
(
ak;3

∫
k0 j̃mneikxd3xe−i(!mn+!k )t + a+k;3

∫
k0 j̃mne−ikxd3xe−i(!mn−!k )t

)
;

∫
HL(2)

int d3x =
˝3=2√
2mtL3=2

∑
m;n;k

b+n bmk!
−1=2
k

×
(
ak;3

∫
�̃mneikxd3xe−i(!mn+!k )t + a+k;3

∫
�̃mne−ikxd3xe−i(!mn−!k )t

)
:

(5.20)

We have here restored the units, mt → mtc=˝. The longitudinal operators a(+)
k;3 anticom-

mute, the representation (5.11) applies, and we assemble the matrix elements of the
longitudinal interaction operator as〈

n
∣∣∣∣
∫

HL
int

∣∣∣∣m
〉
abs

= (−)n¡mnk〈TL
abs〉e−i(!mn+!k )t ;

〈
n
∣∣∣∣
∫

HL
int

∣∣∣∣m
〉
em

= (−)n¡m(1− nk)〈TL
em〉e−i(!mn−!k )t ;
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〈
TL
abs=em

〉
:= 〈TL(1)

abs=em〉+ 〈TL(2)
abs=em〉; 〈TL(1)

abs=em〉 :=
−˝3=2!1=2

k√
2mtc2L3=2

∫
k0 j̃mne±ikx d3x ;

〈
TL(2)
abs=em

〉
:=

˝3=2k√
2mt!

1=2
k L3=2

∫
�̃mne±ikx d3x : (5.21)

Here, nk is an occupation number in Fermi statistics, zero or one, and (−)n¡m denotes
the sign factor occurring in the fermionic representation (5.11); k0=k=k is the tachyonic
unit wave vector. The generalization of the matrix elements (5.19) and (5.21) to a
refractive and absorptive spacetime can be found in Ref. [20]. Finally we return to
(4.1)–(4.3), and inspect the integral

∫
(umVu∗n − u∗nVum)e±ikx d3x, once by applying

the Gauss theorem, and once by using the Klein–Gordon equation. In this way we
derive k0 j̃mne±ikx = ∓k−1!mn�̃mne±ikx, valid under the integral sign, cf. (2.25). Thus,
we can express the longitudinal T -matrix by the charge density alone:〈

TL
abs=em

〉
=

mtc2√
2˝1=2!1=2

k kL3=2

∫
�̃mne±ikx d3x ; (5.22)

where we used energy conservation, !k = ∓!mn in (5.21), as well as the tachyonic
dispersion relation (5.3) (with mt → mtc=˝.)
Once the matrix elements are known, the transition rate for transversally induced ab-

sorption and emission in a given polarization 3 is obtained by a standard
procedure [30],

wT; ind
abs=em ∼ 1

t˝2
∑
k

nk
∣∣∣〈TT

abs=em

〉∣∣∣2
∣∣∣∣∣
∫ t=2

−t=2
e−i(!mn±!k )t dt

∣∣∣∣∣
2

∼ 2�
˝2c2

L3

(2�)3

∫ ∣∣∣〈TT
abs=em

〉∣∣∣2 �(1)(!mn ± !; t)
k(!)!
e�˝! − 1

d! d ; (5.23)

valid for large times t, with the smooth Dirac limit function �(1) as deGned in (2.13).
We have here replaced the box-summation by the continuum limit, L3(2�)−3

∫
dk,

and the occupation numbers by their averages 〈nk〉 = (e�˝!k − 1)−1, cf. (5.12). d =
sin ! d! d’, the solid angle element of the tachyonic wave vector, and k(!) is given
in (5.3). The same formula also applies to spontaneous radiation, wT;sp

em , but with the
〈nk〉-factor dropped, since wT;sp

em stems from the +1 under the root in (5.19). In the
limit t → ∞, the d!-integration in (5.23) gets trivial, and by substituting (5.19) we
Gnd

dwT; ind
abs=em ∼ 1

8�2

k
˝c2

1
e�˝! − 1

∣∣∣∣
∫
Uk; 3 j̃mne±ikx d3x

∣∣∣∣
2

d 

=: 1
2 BT

mn(∓k; 3)�T(!) d ; (5.24)

dwT;sp
em ∼ (e�˝! − 1)dwT; ind

em =: AT
mn(k; 3) d ; (5.25)

where ! (and k(!)) is taken at |!mn|. The upper sign refers to absorption, and m
to the initial state. The transversal tachyonic spectral density �T is deGned in (5.12).
(The spectral densities in (5.12) refer to the tachyonic heat bath triggering the induced
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radiation.) The total emission rate is dwT
em = dwT; ind

em + dwT;sp
em . In equilibrium, induced

emission and absorption compensate each other, due to the detailed balancing symmetry
BT
mn(k; 3) = BT

nm(−k; 3), which follows from the hermiticity of the current matrices
(4.2). The spontaneous emission of transversal tachyons is temperature independent,
unaKected by the tachyonic heat bath, in contrast to the longitudinal emission discussed
below. The unpolarized transversal radiation rates are obtained by replacing �k; 3 j̃mn in
(5.24) by the transversal current, j̃Tmn := j̃mn − k0(k0 j̃mn), where k0 := k=k and

j̃mn = c2
km + kn

!m + !n
�̃mn; �̃mn =

q(!m + !n)
2L3√!m!n

exp(i(km − kn)x) ; (5.26)

cf. (4.2) and (4.3).
The spontaneous emission rate (5.25) is symmetric, AT

mn(k; 3)=AT
nm(−k; 3), re0ecting

the time symmetry of the classical radiation Geld, cf. Section 2. (The radiation dis-
cussed in the previous sections is all spontaneous.) The retarded Geld, which we have
quantized, results from the absorber Geld complementing the time-symmetric Geld of
the particle, as pointed out after (2.5). The net energy balance of the time-symmetric
Geld is zero, as the spontaneous emission of a tachyon is accompanied by the ab-
sorption of an absorber quantum. This restores the initial state of the source in the
reverse transition. Spontaneous absorption stands as the quantal analog to the advanced
modes of the time-symmetric classical wave Geld. Induced transitions are not aKected
by the absorber Geld, and in equilibrium induced emission and absorption cancel each
other, due to the mentioned symmetry of the B-coe2cients. In the energy balance
for the equilibrium distribution �T(!) in (5.12), the diKerent Boltzmann weights are
accounted for by the A-coe2cients,

Nm( 12B
T
mn(k; 3)�T(!) + AT

mn(k; 3)) =
1
2NnBT

nm(−k; 3)�T(!) ; (5.27)

and the occupation numbers relate by Nm=Nn=exp(−�˝!mn), quite independent of the
statistics.
We turn to longitudinal radiation. The induced absorption/emission rate for longitu-

dinal tachyons is composed analogously to the transversal rates (5.23),

wL; ind
abs=em ∼ 1

t˝2
∑
k

nk|〈TL
abs=em〉|2

∣∣∣∣∣
∫ t=2

−t=2
e−i(!mn±!k )t dt

∣∣∣∣∣
2

; (5.28)

with 〈TL
abs=em〉 in (5.22). The fermionic occupation numbers are replaced in the contin-

uum limit by the averages 〈nk〉= (e�˝!k + 1)−1, cf. (5.12). Hence,

dwL; ind
abs=em ∼ 1

8�2

m2
t c

2

˝3k
1

e�˝! + 1

∣∣∣∣
∫

�̃mne±ikx d3x
∣∣∣∣
2

d =: BL
mn(∓k)�L(!) d ;

(5.29)

where m denotes the initial state, both for absorption and emission, and != |!mn|. The
longitudinal spontaneous emission is identiGed as follows. The nk in (5.21) can only
take the values zero and one, so that the factor 1 − nk does not change if squared.
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Thus the total emission rate is dwL
em = dwL;sp

em;T=0 − dwL; ind
em , with dwL; ind

em as deGned by
(5.29) and

dwL;sp
em;T=0 := (e�˝! + 1) dwL; ind

em : (5.30)

This is the spontaneous transition rate in the zero temperature limit, obtained from
(5.28) with the nk-factors dropped. At Gnite temperature, the spontaneous emission is
dwL;sp

em =dwL;sp
em;T=0−2dwL; ind

em , so that the total emission dwL
em =dwL; ind

em +dwL;sp
em . Hence,

dwL;sp
em ∼ (e�˝! − 1) dwL; ind

em = tanh(�˝!=2) dwL;sp
em;T=0 =: AL

mn(k) d ; (5.31)

which reduces in the absence of a tachyonic heat bath to dwL;sp
em;T=0 The basic symmetries

BL
mn(k)=BL

nm(−k) and AL
mn(k)=AL

nm(−k) also extend to longitudinal radiation, so that
the induced transitions cancel each other, and a spontaneous transition is instantaneously
restored by an absorber quantum. The longitudinal spontaneous emission (5.31) is
temperature dependent and vanishes in the high temperature limit. At Gnite temperature,
the equilibrium condition, cf. (5.27),

BL
mn(k)�L(!) + AL

mn(k) = BL
nm(−k)�L(!) exp(�˝!mn) ; (5.32)

requires the longitudinal density �L(!) in (5.12).
I take this opportunity to correct a mistake in the dipole approximation of the longi-

tudinal transition probability calculated in Ref. [20]. The squared ratio ˝!ji=(mtc2) in
Eqs. (5.17), (5.23) and (5.27) of Ref. [20] should be inverted. At 2:2 MeV, the ratio
of the longitudinal and transversal dipole transition rates reads !L=!T ≈ 3:8 × 10−7,
from which we conclude that the longitudinal background radiation has reached equi-
librium within 1018 s. This is to be compared with a cosmic age of H−1

0 ≈ 14 Gyr ≈
4:4× 1020 s. The reasoning behind this is explained in Ref. [20].
At zero temperature, the power spontaneously radiated by a freely propagating charge

was calculated in Section 4 by means of the correspondence principle, which amounts
to identify in (2.20)–(2.26) �̃(x; !mn) and j̃(x; !mn) with the hermitian current matrices
�̃mn and j̃mn in (5.26). The powers (4.20) and (4.22) can be recovered from the emission
rates dwT;sp

em and dwL;sp
em;T=0 in (5.24), (5.25), (5.29), and (5.30). The angular-integrated

power radiated at != !mn is apparently

PT(!mn) = ˝!mn

∫
 
dwT;sp

em ; PL(!mn) = ˝!mn

∫
 
dwL;sp

em;T=0 : (5.33)

We consider unpolarized transversal radiation, which means to replace Uk; 3 j̃mn in dwT;sp
em

by the transversal current j̃Tmn. If we substitute the current (5.26) into the powers (2.22)
and (2.23), we obtain (5.33); thus the spectral densities (4.18) and (4.19) also hold in
second quantization.

6. Conclusion

The absorber theory [12] was motivated by Dirac’s covariant version of radiation
damping [15], where the absorber Geld, half-retarded minus half-advanced, enters as
Lorentz force. In the non-relativistic derivation of Abraham and Lorentz [14] it does



354 R. Tomaschitz / Physica A 320 (2003) 329–356

so as well, of course, but in a less explicit way. In any case, this Geld is not perceived
as stemming from an absorber medium, but rather as generated by the charge itself.
In Dirac’s theory, the absorber Geld does not show as radiation Geld in the equations
of motion, but is exclusively applied along the trajectory of the charge, deGning the
damping force. Here we have elaborated on superluminal radiation Gelds at large dis-
tance from the source, the opposite limit. The asymptotic Gelds are quite su2cient to
calculate the spectral densities and the radiant power, classically as well as in sec-
ond quantization. It is not advisable to rely on the short distance behavior of Green
functions; the self-energy problem indicates that the Maxwell theory may just be the
asymptotic limit of a non-linear Born–Infeld type of electrodynamics [31]. If so, one
cannot use the linearized theory in the vicinity of the radiating sources. The same holds
for the Proca Geld.
Wheeler and Feynman designed the absorber theory for electrodynamics, and they

interpreted the half-retarded minus half-advanced Li=enard–Wiechert potential, cf.
Section 2, as generated by an absorber medium, which they proposed to be the collec-
tion of electric charges in the universe [12]. They used this potential in an action-at-
a-distance electrodynamics [10,11,13], in an attempt to solve the radiation damping
problem. In the Maxwell theory, we do not consider an absorber medium because
there is a retarded Green function. Outside the lightcone, however, retardation can
only be achieved by an absorber Geld, as the Green function supported there is time
symmetric. A causal theory of superluminal signals needs an absolute spacetime, since
Lorentz boosts do not preserve the time order in spacelike connections. Once the
absolute nature of space is acknowledged, it is only a small step to identify space
itself as the absorber medium, the ether, whose microscopic oscillators generate the
absorber Geld [16,20].
I conclude by comparing the absolute spacetime underlying superluminal radiation

to the relativistic spacetime view. Radiation by inertial charges may be unimaginable
in relativity theory, but in the absolute cosmic spacetime this is easy to comprehend,
since accelerated and inertial frames are treated on the same basis. There is a universal
reference frame, the rest frame of the ether, generated by the comoving galaxy grid and
manifested by the microwave background and other background radiations. The spectral
density of the radiation is determined by the velocity of the uniformly moving charge.
This is not a relative velocity, it stands for the absolute motion of the charge in the
ether. Relative velocities only aKect the appearance of the radiation in moving frames.
In the rest frames of inertial observers, the radiation Geld may appear advanced, the
transversal and longitudinal modes may appear tangled, or they may not appear at all, as
it happens in the rest frame of the radiating charge [24], but all this is a consequence of
the observer’s individual motion. Whatever the appearance of the superluminal radiation
Geld in a moving frame, the observer can infer the radiation in the rest frame of
the ether (such as the power, the spectral densities and the frequencies radiated) by
measuring the absolute velocity of the charge in the microwave background.
More generally, the relativity principle asserts that the laws of nature are the same

in all inertial frames, in particular, uniform motion and rest are not distinguishable in
this respect. In the absolute cosmic spacetime, the laws of nature are inherent in the
rest frame of the ether, and their appearance in inertial frames is determined by the
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observer’s state of motion. This is in sharp contrast to relativity theory, where the laws
of nature are thought of as attached to individual and equivalent inertial frames. The
absolute spacetime concept is centered at the state of rest, tantamount to the universal
reference frame generated by the galaxy grid. Particles move in the ether, subjected
to the 0ow of cosmic time as deGned by the galactic recession, without resort to
the inertial frames and proper times of individual observers. This is again in strong
contrast to relativity theory, where inertial frames are the substitute for the universal
rest frame. In the absolute cosmic spacetime, the crucial distinction is not between
inertial and accelerated frames, but simply between motion and rest, and therefore it
is not surprising that uniformly moving charges radiate.
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