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Abstract

We consider classical and quantal motion in open de Sitter cosmologies of
multiple spatial connectivity. The topological structure of the spacelike slices creates on
the one hand chaotic trajectories, on the other hand bound states whose wave fields and
energies are intimately connected with the Hausdorff dimension and measure of limit sets
of chaotic trajectories in the covering space of the manifold. We discuss the time
evolution of of the energy of wave fields coupled to the curvature scalar of the 4-manifold
in the early and late stages of the cosmic expansion, and its dependence on the spectral
variable of the Laplace-Beltrami operator on the space sections. This spectrum is in turn
entirely determined by the topological and metrical structure of the sections.

I. Introduction

In this paper we will address questions concerning the influence of the global
topological structure of space-time on the microscopic laws of motion. At fist, in how far
does the topology of the spacelike sections of Robertson-Walker Cosmologies influence
the time evolution of the energy of wave fields, the quantum version of geodesic motion
on world lines. Secondly we discuss the reconstruction of quantal wave fields from
chaotic classical world lines. These world lines having the Bernoulli property are a typical
consequence of the multiple connectivity of 3-space, and are foreign to simply connected
spaces, traditionally encountered in cosmological models.
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The first question is in some sense paraphrasing Mach's principle, namely that the
global structure of the universe determines the local laws of of motion, inertial forces
being gravitational, stemming from the mass content of the whole (closed) universe. Our
emphasis lies more on the topological structure of the open universe, which is of course
in turn related with the energy momentum tensor of the mass distribution.

In the second problem it might seem strange that it is possible to reconstruct a
non-deterministic wave field from classical geodesics. The point is here that we actually
relate two probabilistic models of microscopic motion, that of quantum mechanics and
that of unstable classical dynamics, the classical trajectories in question having positive
Lyapounov exponents.

II. Open Robertson-Walker cosmologies of multiple connectivity

We consider cosmological line elements of the form

ds?=- c2di? + a%(t)do? | (2.1)
where do2 is the metric of hyperbolic 3-space, which we may represent in the
coordinates of the Poincaré ball B3, I¥! <R (cf.[1]),

do?=— 4dt2
(1-1X12R2)? 2.2)
The expansion factor of 3-space a(t) determines the Gaussian curvature
K = -1/(aR)? of the spacelike sections t = const. .The spacelike projections of the
geodesics into B3 calculated via (2.1) are arcs of semicircles orthogonal to S, the sphere

at infinity (boundary) of B3, where the Poincaré metric gets singular. The totally geodesic
planes in B3 are thus spherical caps orthogonal to S, .

Hyperbolic manifolds, i.e. manifolds of constant negative curvature, are modelled
in B3 as non-Euclidean polyhedra, whose faces lic on geodesic planes. The faces are
identified in pairs by elements of the Lorentz group, acting in B3 as invariance group of
(2.2), defining in this way the topology ( compare the well known example of a torus
represented in the Euclidean plane as a square with identified sides). The polyhedron
may have 'free’ faces on S, which are not identified in pairs and which constitute the
boundary at infinity of the manifold. The face-pairing transformations generate a discrete
subgroup I" of the Lorentz group, the group of covering transformations of the manifold,
and B3 is its universal covering space. The set I'(F) of all images of F under I' gives a
cover (tiling) of B3. I'(F) as an infinite number of tiles in B3 has accumulation points,



189

the limit set A(I') of I'. For the manifolds that we consider here, which have the topology
Ix S, Ianopen finite interval, S a compact Riemann surface, A(I') is a Jordan curve on
Soo - Figs.(1,2) show these limit sets and the interior part of the tiling induced on S

from the covering of the ball B3, The tiles are images of one of the boundary surfaces
(free faces) of the 3-manifold under the covering group I'on S,

The topological structure of 4-space is now R* x I x S, R* the time axis 0< t <eo,
and I x S is represented in B3 as a polyhedron F with face-identification by I'. The metric
of B3 is induced on F. We mention that F and I could also vary in time, constituting a
one-parameter family (F(t), I'(t) ) of non-isometric 3-manifolds. Even the topological
structure of 3-space may change, e.g. it could disintegrate by developing parabolic cusp
singularities at the boundary of the deformation space ( cf.[2, 3] ).

We call a trajectory bounded if it stays in a finite region that is not expanding
faster then 3-space itself . The bounded chaotic trajectories are intimately connected with
the limit set A(I") (cf.[7]). For example if the expansion factor a(t) is of the order t*,
o1 fort — 0, a trajectory is only then bounded for t — O, if its lifts in the covering
space emanate from A(I), and has then the Bernoulli property. Likewise, if a(t) is of
order tB, B <1/2,fort— oo, it is only then bounded for t — oo if its lifts end in the
limit set A(T"). Thus in the case of de Sitter space, a(t)=sinh(At), the bounded trajectories
are exactly those that emanate from A(I) (cf.[8]).

The energy-momentum tensor Tuv produced by the metric gyy in (2.1)

we obtain v1a the Einstein tensor : 8k °4TPV = Rl-W 1/2guvR +Aguv , with
Roo=-3a , Ryj=4(1-RI7RY %5;[c2(aa+ 2a2) 2R% , Roj=0 (5ign conven-
tlons as in [5] ). We have to show that Tuv can be brought into the form
T,w = (e+p)uyuy+pgyuv , with €,p,uy automorphic functions of I' (periodic with respect
to I') in B3, so0 that their restriction onto F gives smooth fields on the manifold, in
particular on the identified polyhedral faces* . We choose as in the topologically trivial
case u= (c, 3 ) (comoving frame); € and p are then functions of a(t) and its first and
second derivatives, and g,y is automorphic with respect to any discrete subgroup of the
Lorentz group. It would be interesting to see if this holds true if we relax the condition of
constant curvature of 3-space and allow local perturbations of the metric (see also
Section IV).

* I would like to thank N. Balazs for pointing out this consistency check.



Fig. 1: Tiling induced on the sphere at infinity of the Poincaré ball by the universal cover
of the manifold. The quasi self-similar Jordan curve determines the bounded trajectories,
and its Hausdorff measure the corresponding chaotic wave ficlds. g(S)=19, 6= 1.382.
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Fig. 2 : As Fig. 1, covering of S_, stemming from a section t = const. of the

4-manifold. Figs. 1, 2 show tilings of two non-isometric points on a path (F(t), I'(t)) in
the deformation space of the topological manifold I x S. g(S)=19, 6=1.424 .
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III. Wave mechanics

The wave equation on the covering space R* x B3 reads
[O- &R - (mem)?] y=0 , (3.1)

O s the Laplace-Beltrami operator of the line element ds2 in R* x B3, and § the
(dimensionless) coupling to the curvature scalar R .

Separation of variables w(t, %) = y®) ¢(t) in (3.1) gives

[As + R25(2-8)] y=0 (3.2)

As? is the L.-B.-operator of B3 endowed with the Poincaré metric (2.2 ) and
R25(2-3) , the separation constant, appears as spectral parameter.We keep here (F, I')
independent of time, otherwise eq.(3.1) is not separable. For ¢ we have

6+3 %q, +[(mem)? + A% (2- 8) a %))+ 2ER(] 0 = 0 , (3.3)

with A=c/R .

The wave equation on the manifold R* x Ix S, Ix S represented as the
polyhedron F in B3 is just eq. (3.1) subject to periodic boundary conditions on the
identified faces of the polyhedron, which amounts to require periodicity of yin B? with
respect to the group T, y(t, y')?) = \v(t}) forallyinT.

Concerning the time dependence of y we impose the following end-value
condition on ¢(t) (positive frequency solutions) : o(t) ~ f(t)e-is® for t— o, with
real f, g; f(t) monotonically decreasing, and g(t) strictly monotonically increasing, thus
approximating as well as possible the Minkowski space solutions in the asymptotic
regime, when 3-space gets flat .

About the spectrum of ( 3.2 ) the following is known [6]. There is a unique
discrete eigenvalue fora din the interval [1,2 ). This & is just the Hausdorff dimension
of A(I’). We have absolutely continuous spectrum for 8(2-8) > 1. The square-integrable
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wave function on F belonging to the discrete eigenvalue has an integral representation
with a Poisson kernel and the Hausdorff measure dy of A(),

(1-[XI7RY®
T%du(ﬂ)

V@) =
Ix-1|

(3.4)
The eigenfunctions of the continuous spectrum are Eisenstein series [3, 6].

With the covariant and indefinit scalar product for wave fields the normalization
condition for ¢ reads [8]

Hoo-¢0)=tia%0 (3.5)

where @, @ is a pair of fundamental solutions of (3.3).

The energy -momentum tensor Tuv of the field in (3.1) we get by variation of the

action functional with respect to the metric, cf.[4]. The energy of the wave field is
calculated as

E =1ic2 f Toud=*

z
with £ an arbitrary spacelike hypersurface.
We have then

(o620 &) fourcto 8] o [m2) 4 A%(2-8) o8] s2vstr-e 2]

(3.6)

Ht, 5)= %'ﬁa3

This expression is obviously positive definit for 0 < 6§ < min[1, §(2-3)] , but
actually positivity is too restrictive a condition, for example in the treatment of massless
particles. What we will require is uniform boundedness of the energy functional from
below.
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We discuss ( 3.6 ) valid for every Robertson - Walker line element in the context
of de Sitter space. We have a(t) = sinh(At), 3A2/c2 is the cosmological constant
(denoted by A in Section II), R= 12A2/c2 , and R =c/A . The general solution of
(3.3) is in this case in terms of hypergeometric functions [8]. We define

K2 = 1/4 - 2(1-68) +{mc2iA)?, and v2=1-52-5) 3.7)

and assume k2> 0 to ensure the right time behaviour at infinity. The positive frequency
solution for t - oo is then

= A2 23R +ik) o-AK3/2+ { et 15 243 _4A}
ot)= Alx|) "2 i) @-Ay(3/2+ix) l+l+i1c [4+v +2nc] + O(e4My) ’
(3.8)

andfor t— 0 , v>0 (discrete spectrum),

six  [(1+ix) I'(v) 2V A t)-v-l
Vor|x|A T(1/2 +ix+v) X (3.9)

Pg.se(t) ~

Fort —0 ,Im(v) >0 (continuous spectrum),

2€T(1+in) [ T(v)2 At + —TW2Z p v

Var|x| A [T(1/2+ik-v) [(12+ix+v) . (3.10)

o0 ~

The negative frequency solutions are conjugated to them.

With these solutions we obtain the time evolution of energy in the asymptotically

flat region,
E( t—e0, m>0) ~ M2 = mc2 10d2)
1A x| , (3.11)

and

2A(1-6E) [36E - 55(2-5)] oo

E(t—eo, m=0) ~
v 12€- 9/4 (12¢- 5/4) ) (3.12)

The leading order of the asymptotic expansion is independent of the spectral variable v .
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At the beginning of the evolution , for t = 0, we have

2v-1 -
B0 150y ~ TAZITOAAED v

sinh(r| x| ) [T(1/2 +v +ix)|? . (313)

Finally, for Im(v) > 0, writing v =1v , v =V 8(2-8) -1 >0,

E(Im(v) =v>0, t—0) ~1—}{A(V.K» & +Re[B@, %, 8 (A0™ | . (3.14)

with
AV, x, &) =V ""coth(n | x| ) coth(n V) (V*+1- 6€)
and _
B, 5= LRUW)__Tav)22
sinh(m|k|) (172 - iv+ix) T(1/2-iv-iK)

In the initial state of the cosmic expansion , for t — 0, there is an infinite
oscillation of E ( eq. (3.14) ) between the two curves Tit(A £|B| ), with an amplitude
1t |B| | and a frequency (e"’v-l)'lt“, both diverging to infinity ( A - IBl >0, see
below). On the other hand, the energy associated with the discrete eigenvalue (eq. (3.13),

and 1-6€ > 0) does not fluctuate at all, and overpowers that of the continuous spectrum
eq. (3.14) for any fixed V. However, we see from the following asymptotic expansion,

EW —ooyt) = :’1(—/‘\)3 [1+00/43) 519

valid for any fixed t, that it lies well inside the range of energies obtainable from the
continuous spectrum. We compare these formulae with the classical energy,
E =mc2V1 + const.aX(t) , The constant depends on the initial velocity, and E does not
depend at all on the trajectory, bounded and chaotic or regular and unbounded. The only
thing that is common to classical and quantum energy is the inverse time behaviour
(al(t) ) fort — 0.

Finally we discuss the boundedness of E . Every solution of (3.1) depends on
three parameters m, &, and the spectral variable 8(2-8) . There is a restriction on m and &,
k2(m, &) in eq. (3.7 ) must be positive in order to fulfil the boundary conditions. The
requirement on E of uniform boundedness from below, simultaneously for t and 6(2-9)
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for fixed m, § , imposes further restrictions on the spectral variable 3(2-8). At first we
note that in eq. (3.13 ) we have to require 1 - 6 > 0 . If this is not satisfied we exclude
the solution corresponding to the discrete eigenvalue, as it is the case for m = 0. The
smallest value that the second term in (3.14) periodically admits is - IBI . The necessary
and sufficient condition insuring boundedness of E from below for t — 0 is thus

A-IBI >0, or

N~ ] 1 sinh?(rx)
FO) =v241-66- Vv 1 |1 &Icosh(nx)% >0, (3.16)

0<V<oo, v=82-8)-1 Notethat FO) =1-6&-|1-6&|+OF?) |

There is for given m, & at most a finite interval to be excluded from the spectrum of As?
to ensure E(v,t)>const.(m,&) fort— 0. From the asymptotic formulae ( 3.11,
3.12 ) and (3.15) and from the asymptotic behaviour of the exact solution [8] for
V = const.exp(At) —eo ’ |0V, t)| = const.exp(-3/2 At) , which gives a lower bound for
the second term in (3.6) ) we conclude that the energy functional is bounded from below,
uniformly for all t, v with the exception of the excluded interval . It can be made positive
definite by adding a finite constant, independent of v and t.

IV. Conclusion and outlook

The global topological structure of the universe reveals interesting relations
between the classical and quantal formulation of dynamics. The multiple connectivity of
the spacelike slices produces on the one hand chaotic trajectories, on the other hand
bound states, square-integrable chaotic wave fields, both determined by the limit sets of
the covering groups of the slices. In Section III we discussed in some detail in the
context of de Sitter space the asymptotic time behaviour of the energy of such wave
fields, and its dependence on the Hausdorff dimension of the limit sets.

We believe that the decisive influence of topology will survive if we relax the
restriction of constant curvature, imposed on the spacelike slices. In fact, local deviations
from homogeneity and isotropy and even singularities can be described by perturbations
of the Poincaré metric (by adding to it a symmetric tensor field automorphic with respect
to the discrete group I', or by an automorphic conformal factor), and the described picture
should not change. For the practical construction of such perturbations in terms of
Poincaré series see [9]. The covering space is then still B3, the covering group T, the
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polyhedral tiling remains the same, though the polyhedral faces are not any more geodesic
planes. The lifts of the chaotic geodesics in the perturbed metric emanate again from the
same limit set, and the bound state wave functions should still have an integral
representation in terms of weighted automorphic forms, supported on the limit set.
Finally, the classical electromagnetic field should be treatable in similar terms,
each of its components satisfying a Klein-Gordon equation, one has then to cope with
potential terms of the form R,YAy and the gauge fixing terms that lead to a coupling

among its components.
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