Relativistic quantum chaos in Robertson-Walker cosmologies
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Open Robertson—Walker cosmologies of multiple spatial connectivity provide a challenging
example for the possible influence of the global topological structure of space-time on the laws
of microscopic motion. Free geodesic motion is investigated in such cosmologies in the context
of first quantization. A unique localized wave field, a solution of the Klein-Gordon equation,
is found as a consequence of the topological structure of the spacelike slices ¢ = const of the
manifold. This solution is closely related to the collection of the bounded chaotic trajectories.
The link is provided by the quasi-self-similar limit set of the group of covering transformations
on the boundary of the universal covering space of the spacelike sections. It is this fractal set
from which the covering geodesics of the bounded trajectories emerge, its Hausdorff measure

and dimension determine the localized wave field.

I. INTRODUCTION

We consider Robertson-Walker (RW) cosmologies
whose spacelike slices = const. are three-manifolds of mul-
tiple connectivity, infinite volume, and negative sectional
curvature. A typical class of such manifolds is that of smooth
thickened surfaces: imagine a two-sphere with some handles
attached and imagine the material of which this surface is
formed as thick. One gets a three-dimensional space with an
interior and exterior boundary, topologically I XS, fibering
over a finite interval J, the fibers S being compact Riemann
surfaces of genus g>2.

If the boundaries are removed such three-manifolds can
be endowed with a metric of constant sectional curvature,
that becomes singular at the boundary and gives rise to infi-
nite volume.

The global topological structure of the RW cosmologies
we treat here is thus R’ X7 X S, where R "’ is the real
(positive) axis. The construction and the geometrical and
topological properties of such manifolds will be dealt with in
Sec. II.

Geodesic motion in R+’ X7 X.S, which is locally en-
dowed with a RW line element, we will treat (Sec. III) by
embedding the manifold into its universal covering space
R+’ X B*. Here, B * denotes hyperbolic space, a shell of the
Minkowski hyperboloid, or the Poincaré ball, isometric to it.
We will find that there is a special class of trajectories in
R+’ I XS, namely those that stay during the whole time
evolution in a finite domain that is expanding at the same
rate as three-space itself.

These bounded trajectories have covering geodesics in
R‘*’ X B* whose initial or end points lie in the limit set of
the group of covering transformations. This limit set consti-
tutes a fractal quasi-self-similar curve on the boundary of
B°*. The bounded trajectories are, as in the nonrelativistic
case, chaotic,' having the Bernoulli property.

On the other hand, with the limit set of the covering
group there is also associated a localized, square-integrable
wave field, a solution of the Klein—-Gordon equation on
R(*)X I XS. In Sec. IV we give an integral representation
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of the space part of this wave field in terms of the Hausdorff
measure of the limit set, which in the classical case deter-
mines the bounded trajectories.

This localized state as well as the existence of bounded
chaotic trajectories is an effect of the global topological
structure of the space, and is absent in the traditional open
RW models of simple spatial connectivity.

In Secs. IV and V we discuss the time evolution of the
energy of wave fields, especially in the early and late stages of
the cosmic expansion, and in Sec. V we give some examples,
the static case, de Sitter space, and finally a space that is flat,
with an expansion factor that is linear in time.

Il. RW GEOMETRIES OF MULTIPLE CONNECTIVITY
AND NEGATIVE SPATIAL CURVATURE

Cosmological line elements complying with the princi-
ples of homogeneity and isotropy can be represented as®™*

ds’ = —c?dt? + d*(t)dd?, (1

where do is the line element of a three-dimensional space of
constant curvature, which we will assume to be negative.
The expansion factor a(¢) determines the Gaussian curva-
ture of the spacelike slices ¢ = const.; cf. (5) and (6). The
metric do? is usually represented as

do® = R *[dp® + sinh?(p)(dd * + sin*(Nde )], (2)

0<p< 0, and has sectional Gaussian curvature — 1/R 2
Introducing a new time variable

"dt
’ t — —
! ( ) J;onst. a ( t)

we can make (1) conformal to a static metric

ds? =a*(t")[ — 2 dt'* + dd?], 3)
a(t'y:=a(e(t")).

In the following we use a form of (2) that is conformal

to the line element of Euclidean three-space, the change of
coordinates
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2r/R

—IW, 0<r/R<l,

sinhp =
transforms a*(¢)do? of (2) in the metric of the Poincaré ball
B3 r:=|x| <R, cf. Refs. 5 and 6,

4a*(t)dx?

()do? = —————.
a0 (1— |x|*/R?)?

(4)

In B* we will construct representations of the three-
manifolds that form the spacelike sections of our models.

In the discussion of the wave equation in Sec. IV we need
explicit formulae for the curvature scalar of the line elements
(1) and (3). Using the sign convention for th/q curvature
tensor as in Refs. 3 and 7, the curvature scalar R, of the
sections ¢ = const. of (1), (3) reads

Ryee =6K = —6/a*(1)R?, (5)
where a(?) is dimensionless and K the Gaussian curvature of
the two-sections of the spacelike slices. .

The four-dimensional curvature scalar R of metric (1)
or (3) then reads’?®

- —1 a(e) ax(1)
R =6
[az(t)R2 ca(t) (1)
—1 a(t’)
=6 ; (6)
[Rzaz(t’) cad(t))

the dots denote derivatives with respect tg the time variables.
If a(¢) is a constant, then R reduces to R,... In Sec. V we
will encounter an example with R=0, R,.#0
(a(t) = Ap).

AsinRefs. 1,9, and 10 we model three-space I X Sin the
Poincaré ball B* as a non-Euclidean polyhedron with face
identification (analogous to the modeling of a torus of zero
curvature in the Euclidean plane by identifying the sides of a
square; see also Ref. 11 for Riemann surfaces). We empha-
size that this polyhedron does not change in time, nor does
the radius R of the Poincaré ball, if we use the metric (1),
(4) on I X B* What varies in B is the Gaussian curvature
(5) and the geodesic distance between two points, measured
via (4).

For the sake of self-containedness we sketch shortly the
construction of polyhedra in B* that give rise to manifolds
IXS.

The faces of the polyhedron lie on totally geodesic
planes, i.e., on spherical caps orthogonal to the boundary
sphere S_ of B>, where the metric (4) gets singular. Geode-
sics in B are arcs of circles orthogonal to S, .

The identification of the faces is carried out by elements
of the invariance group SL(2, C) of the metric (4), for ex-
plicit formulae for the group action in B * see Refs. 1 and 6.
The polyhedron has two open ends, namely faces lying on
S, that are not identified, and whicii constitute the two
boundary components of I X S.

Due to these open ends the volume of the polyhedron
measured by (4) is infinite, R+’ X X .S belongs therefore
to the open models, the spacelike fibers have infinite volume,
and B is their universal covering manifold.'>'* The group
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I' of covering transformations is generated by the face-pair-
ing transformations of the polyhedron. This group, applied
to the polyhedron, say F, gives a tesselation I'(F) of the
covering space B * that gets filled with isometric images of F,
which cover B ® completely without overlappings. There are
accumulation points of images of F, located on S , consti-
tuting a closed fractal Jordan curve A(I") on S_, the limit
setof I'.

Figures 1(a)-1(d) show tesselations of .S , which are
induced from the tiling of B *, and stereographically project-
ed onto the complex plane. The tiling of the second connec-
tion component, enclosing the point at infinity, has not been
drawn. The large black polygon is an open end of the polyhe-
dron F, one of the boundary surfaces of 7 XS, if its sides
(circular arcs) are properly identified in pairs. The tessela-
tions are obtained by applying I to this polygon. The genus
of the fibers S'is 19 in all four examples; in fact the polygons
have many more sides that are sitting on the vertices and are
many orders of 10 smaller than the visible ones. There are
bounds on the Hausdorff dimensions of such limit sets that
can be circumvented only by increasing the genus of the fi-
bers.'*

Likewise the second boundary surface of I X.S'is a poly-
gon containing the point at infinity, I" applied to it tesselates
the remaining part of C and provides the exterior approxi-
mation to A(T").

From the tesselation one can read off the Hausdorff di-
mension 6 of A(T). It is related to the number of tiles that
one needs to get a uniformly accurate approximation'*!¢ of
the curve by the tiling: &(a) = 1.386, &(b) = 1.393,
6(c) =1.381,6(d) = 1.452 (all up to + 0.003, for the cal-
culation of & see Ref. 1).

The topological structure does not determine the global
metric structure of three-space nor of the four-manifold, lo-
cally determined by (1). In fact the four examples in Figs.
1(a)-1(d) correspond to nonisometric manifolds 7 XS
(there does not exist an isotopic distance-preserving diffeo-
morphism). Only polyhedra whose covering groups I' are
SL(2,C)-conjugated are globally isometric.

Though the topological structure does not determine
the metric structure, it restricts it however: the space of met-
rics that are locally of the form (4), and that can be carried
by a manifold 7 X .S, can be parametrized by 12(g — 1) inde-
pendent real parameters, g the genus of .S (deformation
space, cf. Refs. 17 and 18). The same holds true for
R¢*> X1 XS and the line element (1), with a given a(?).

The Jordan curve A(T") of the limit points of the cover-
ing group I' of three-space is crucial in determining the
bounded geodesics on the four-manifold. This and the con-
cept of boundedness in a time-dependent metric will be dis-
cussed in Sec. III.

Correspondingly, with this curve, its Hausdorff mea-
sure, and Hausdorff dimension there is associated a unique
localized, square-integrable solution of the Klein—-Gordon
equation, which has otherwise purely continuous spectrum.
The existence of bounded trajectories and localized states is a
consequence of the global topological structure, the multiple
connectivity of the manifold. This localization phenomenon
will be dealt with in Sec. IV.
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FIG. 1.(a)-(d) Tilings induced on the boundary S of the universal covering space B * of the spacelike slices I XS, t = const., by the polyhedral tesselation of
B? (cf. Secs. II and III). The images are stereographic projections of S_ , the sphere at infinity of the Poincaré ball B?, onto the complex plane. Only the
component of the tiling on the inside of the quasi-self-similar*' Jordan curve A(T"), which is homeomorphic to a circle, has been drawn. The large black
domain, say £; is one of the boundary surfaces of three-space I X S. The tiling of S is performed generation by generation by applying the covering group I’ to
/- The tiles are the boundary components of isometric images of I X S, which accumulate at A(T"). From the limit set A(T") the covering geodesics of the
bounded trajectories emanate, and its Hausdorff measure and dimension § determine a unique localized wave field of the wave equation on the four-
dimensional manifold R‘*’ X I X S. The tilings (a)-(d) correspond to nonisometric manifolds of the same topological structure I XS, I a finite open
interval, S a Riemann surface, g(.S) = 19; §(a) = 1.386, 8(b) = 1.393, 6(c) = 1.381, 6(d) = 1.452.
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lll. CLASSICAL MECHANICS: THE EMERGENCE OF
BOUNDED TRAJECTORIES AS A TOPOLOGICAL
EFFECT

We treat at first classical motion in the universal cover-
ing space R‘ "’ X B? (cf. Sec. II) of the four-manifold, and
realize then the chaotic trajectories in R+’ X I XS by pro-
jecting the trajectories of R‘*’ X B* into it (compare also
the nonrelativistic case in Ref. 1).

To treat light rays and trajectories of massive particles
on equal footing, it is convenient to start with the line ele-
ment (3), (4). (We write in the following ¢ for ¢'.)

The Lagrange function reads then

L2 =a(1)[*2(s) — (4/(1 — P/R))P(s) + P ()]

(7)

We have g:hosen in (4) polar coordinates 7, 8, ¢ and put
0 = m/2, 8 =0 as the initial condition. Motion then takes
place on the hyperplane 8 = 7/2.

A first integral is

L(s)=A>0. (8)
For massive particles we choose A = 1, the parameter s is
then the arc length, and in the limit A — 0 we obtain 0-geode-
sics.

A second integral of L2 is

— @(1)P@(s)/(1 — P/R*)*=M. (9)
Finally we have from (7), (8)

a(e)
a(e)
where the prime here denotes derivation with respect to ¢. If
we in_troduce in (10) t as an independent variable, and define

g: = t, we get a linear differential equation for ¢* with the
solution

(10)

e @i — 4 —0,
ds

@ =Ac™%a72(t) +ua (), (11)

where u an arbitrary real parameter.

In (8) and (9) we replace ¢ and #by gp 'and g7, i.e., we
take time again as an independent parameter. Then to solve
(8), (9) in terms of r(z), ¢(¢) we make the ansatz

P —2mrcosgp+R?=0, (12)

which means to try a trajectory that has the shape of a B *-
geodesic, a circular arc orthogonal to S, centered at
|m| = m.

With the help of (12) we eliminate ¢ ' from (8), the
resulting equation for r(¢#) can be immediately integrated.
Likewise we eliminate via (12) ¢ ' from (9) and obtain again
an equation for r(¢) that we integrate. As a consistency con-
dition we get then the value of m in (12) in terms of the
integration constants M and y in (9), (10),

16m*M? ( R2)
=—— |1 —-—])>0. 13)
~ R4 m? (
For r(z) we then have
A1) _ 7+ 1/4R*—9R 21— R*/m’ (14)

R* 24 1/4R*+9R *VI—R/m®
with 7 given by
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1
t’::
7(t") 5

R2

XCXP[ i—c—f (14+Au~'c™2%%@)~ "zdt].
const
(15)

[We write again ¢’ for the time variable asin (3).] Since >0
we have 0<r(#)/R<1. The + sign depends on the sign of M
in (9).

In (15) 7 has been calculated in the context of the line
element (3). If we use the line element (1) we get for 7 in
(14)

()= 2;2 CXP[ i%J:m(l +Ap " e (1)) 1
Xa“(t)dt]. (16)
The minimum of (14) is obtained for 7 = 1/2R,
T (17)

R* 1 +JVI—RYm®

For m = o the shape of the trajectory in B * is a straight
line through the center of B *. In fact, using homogeneity and
isotropy, the easiest way to calculate (14) is to do it for the
case m = oo, and then to transport the time-parametrized
straight line by an element of the invariance group SL(2, C)
of (4) in any wished position.

For both 7 — « and 7—0 we have 7(#)/R—-1.If 1 =0
in (15) we get the characteristics of the eikonal equation
[see Eq. (19) ], the rays are geodesics independent of a(¢ ') in
3).

We discuss at first the massive case, A = 1 in (16). If
M =0, u=0in (13), n is constant, the particle is at rest,
and we assume from now on that z > 0.

The static case, a(¢) = 1, can be regarded as the special
relativistic generalization of our example in Ref. 1; 7 varies
between 0 and oo, the trajectory starts at the boundary S of
Blatt= — o and again reaches S at?= + co.

In the case of de Sitter space a(¢) = sinh(Az?), R = c/A,
0<t< w0, we have for 1—0, p~const.(Az) * 1 ie., 7 ap-
proaches either O or infinity; for #— «, 7 approaches a finite
constant. The same holds true for rays, A = 0 in (16).

For a(t) =At, 0<t<ow, we have if t-0 again
n~const.(Az) £, and for
1 ~const. exp( + u'’c/tA), 17 approaches a finite constant.
If A = 0 we have also for #— o 7~const.(Af) £,

For t—0 the curvature radius of three-space goes to
zero, the Gaussian curvature gets infinite, and the distance
between two interior points shrinks to zero. For ¢— « the
distance between two points of B * gets infinite, the Gaussian
curvature goes to zero.

We call a trajectory bounded for f—o if
r(t= w0)/R<1, corresponding to a finite 7,
0<n(t= o) < . Likewise for -0, if (1t =0)/R < 1. If
we do not specify in the following the direction of time,
“bounded” refers to both directions of the time evolution.
Note that in the last two examples (but not in the static case)

-
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the motion of massive particles is bounded for #— o0, but not

uniformly, by a suitable choice of the integration constants

we can make the ratio 7(¢ = c )/R arbitrarily close to 1.
In the case of light rays Eq. (13) is replaced by

m/R =V1 + («R /cM)?,

where @ and M are tlle inte~gration constants in the eikonal
Y(t,rp) = — ot + Mp + ¥(r). The eikonal equation reads
in metric (3)

@RI )

itdoesnotcontaina(z’). Its characteristics are givenin (12),
(14), and (15) with A =0.

Finally we discuss energy in these time-dependent met-
rics. Using polar coordinates and the line element (3), (4),
we have for the space component p of the four-momentum

(18)

Pu = (Po:P)
p*> = 4@ (1) (1 — P/R?) ~*m*t2(s) [F2(1) + P (1) ].
(20)
Using (8) (A =1) and (11) we get>'*?
p’a’(t') = m’c*y, (21)
and from p*p, = — m*c* we have
[c2E2(t")a*(t') — m*’cPla’(t’) = m’c*u. (22)
In terms of the line element (1), (4) Eq. (21) reads
p’a’(t) = m*c*u, (23)
and instead of (22) we have
E*(t) = m*c®ua (1) + m*c*. (24)

Velocity we can define via p=mv/y1 — v*/c?, for
a(t) - «, v approaches zero, for a(¢) -0 the speed of light.
Using Einstein’s or de Broglie’s relation we get from (23)
the law for the variation of the wavelengths, A /a(¢)

= const.,”® that determines the red shifts.

Geodesic motion on the four-manifold R+’ X I X § is
realized by projections of geodesics of its universal cover
R‘*)XxB*® (via the natural covering projection
R X B3RP XTI XS, cf. Refs. 12 and 13).

A geodesic in R**’ X B? is an arc of a semicircle (12)
with the time parametrization (14). The projection is real-
ized by mapping every piece of this arc lying in a tile ¥ (F) of
the tesselation I' (F) (cf. Sec. II) via ! into the polyhe-
dron F. The face identification of Fby I' also gives the identi-
fication of the projected arc pieces, which inherit the time
evolution of the covering geodesics.

If the initial (1 =0, = — o in the static case) or end
point (t = « ) of the arc representing the R‘ +’ X B * geodes-
icin B3 lies in the limit set A(T") (cf. Sec. IT) of the tiling, it
intersects infinitely many images y(F) of the tesselation. In
this case the projected arc pieces in F are uniformly separat-
ed from S, lying in a ball of finite hyperbolic diameter, cf.
Ref. 1. If, on the other hand, the initial or end point of the arc
lies in S but not in A(I'), it intersects only finitely many
tiles, and the projected trajectory reaches S_ at =0
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(t= — o) ort= + o in the image of the last intersected
tile. ,

Thus the condition that a trajectory in R ¥’ X I XS is
bounded is that the initial and end points of its covering
trajectories (geodesics in R¢ ¥’ X B * whose covering projec-
tions give rise to the R¢ *? X I X S trajectory) are either inte-
rior points of B or boundary points lying in the limit set
A(I"). This means that in the static case a(¢#) = 1in (3) the
bounded trajectories are just those whose covering trajector-
ies have their initial (= — « ) and end point (1= + «)
in A(T). In the other two examples a(?) = sinh(Af¢) and
a(t) = At boundedness requires only that the covering tra-
jectories have their initial point at = 0in A(T").

The condition that the initial or end point of the cover-
ing trajectories lies in A(I") gives rise to strong chaotic be-
havior of their projections: they are recurrent, ergodic, have
the Bernoulli property, and the Hausdorff dimension of
A(T) is linked with their topological entropy, cf. Ref. 20.

IV. WAVE MECHANICS: THE EMERGENCE OF
LOCALIZED STATES

The wave equation in the covering space R+’ X B* of

the manifold R *’>X7I XS (cf. Sec. II) may be written
a822,23

[0 — (me/#)? — ER 19 =0. (25)

Here ¢ is a dimepsionless parameter that couples ¢ to
the curvature scalar R in (6). The wave operator® reads in
terms of the line element (1), (4)

L A,

26
20 Cn (26)

d ad
O= —¢c %3 _[ 3 _]
c a1 E a’(t) % +

with the Laplace-Beltrami operator of the Poincaré ball B *

; rz)z[ ( rz)_l ;
Ay, =i(1-2)|a.+2r(1-2) 9],
i 4( R? st R? rar
(27)

where A _; is the Euclidean Laplace operator.

We obtain wave mechanics on R‘ 7 X1 XS by impos-
ing periodic boundary conditions on the wave field in (25)
with respect to the polyhedron F (cf. Sec. IT), that represents
three-space / X Sin B *. Here, ¢ shall be periodic in B * under
the discrete group I that is generated by the face-identifying
transformations of F: ¢(¢,yx) = #(£,x) in R+’ X B * for all
elements y of I.

Finally we will assume for ¥ an end-value condition con-
cerning the time dependence of ¢ for t— 4+ . The special
choice of this condition depends on the factor a(?) in (1),
the time dependence of ¥ (¢,x) for #— + o should approach
as well as possible that of Minkowski space. Examples will be
given in Sec. V. .

Separation of variables in (25), ¢¥(1,x) = @()¢(x),
gives

[A: +4]¢=0, (28)

and
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@+ 3a(a (O

+ [(mc*/%)* + 2Aa—(t) + R (1) ]9 =0,
where A is the separation parameter.

The spectral problem (28) with {b periodic under I in
B> has been discussed in the case of nonrelativistic mo-
tion?*'>2>!: we have absolutely continuous spectrum in the
range ] 1/R 2, [ and one square-integrable, localized solu-
tion for a A, in 10, 1/R? ]. This A, is connected with the
Hausdorff dimension 6 of the limit set A(I") of the group '
of covering transformations via the formula (cf. Refs. 25,26)

(29)

Ao =R ~28(2—8). (30)

To recapitulate what has already been stated in Sec. II:
We start with a polyhedron Fin B * and a face identification
that gives rise to the topology of 7 X S. The metric of B? is
induced on F. We may deform the shape of F a little. This
causes a slight perturbation of the face-identifying transfor-
mations, so that the group T generated by the perturbed
generators is still isomorphic to I, but in general not SL(2,
C)-conjugated to I'. The limit sets A(I") and A(T) have
then different Hausdorff dimensions; the deformed polyhe-
dron inherits a metric of B that is globally nonisometric to
that of F. Here, 6 depends only on this metric, it may range in
the interval [1, 2[.

The localized 12! corresponding to A, = R ~26(2 — &)
admits a Helgason representation in B * as>>?’

2 246
;}(x)=f (1—|x|*/R?)
A |x—m|*
where du(n) is the Hausdorff measure on A(T"). (It is a
conformal density pf weight 6, with respect to T, tAhat causes
the periodicity of ¢, cf. Ref. 20.) The wave field ¢ is square
integrable over F with the volume element of (4)
dv,, =8(1— Ix|*/R?) ~3dx’. (32)

The spectral resolution of (28) corresponding to the
continuous part of the spectrum in ] 1/R %, « [ can be done
in terms of Eisenstein series (cf. Refs. 28 and 29), but we will
not make explicit use of them in the following.

Next we discuss the time evolution of ¥ determined by
Eq. (29), which is linear and second order. The Wronskian
determinant of two solutions ¢, @, depends up to a constant
factor only on the coeflicient in front of ¢, which means in
the case of (29)

@@, — @@, =const. a”*(2).

We can define a covariant scalar product for solutions
¥, ¥, of (25) as

(¢1,¢2)=-§L(¢.%%‘— %

where d2* is the volume element of a future directed space-
like hypersurface 2 in R+’ X1 X S. The integral in (34) is
independent of the special choice of = (via Green’s theorem,
cf. Refs. 23 and 3). If we use in (34) for 2 three-space, 2°is
the only nonvanishing component of d2* and is given by

dz’=a’(t)dV ;. (35)
Thus (34) is independent of time.

du(m), (31)

aJ
Jx

"

A )d)‘.", (34)
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(33) |

The normalization condition

)= +1 (36)
now reads for (z,x) = ¢;(t):'/}(x)
ffﬁfdeBFl 37
F
and
1(pp — ¢@) = +ia >(1). (38)

The energy of a solution of (25) is determined via the
T component of the energy-momentum tensor of the field.
We consider the minimally coupled case £ = Oin (25). Then
T,, is given by*

Tllr" =%[¢# ¢_,V+ "E'p,V] +%Lg;tv’ (39)
with the Lagrange function

L= —4, .8 — (mc/H)y, (40)
which leads to (25):

¢;#vg,uv_ (mC/ﬁ)2¢=0, (41)

Applying (26), (41), and Green’s formula to T, in
(39), we get

~~[1 do dp 1 —d d
T. =c 2 [__¢_£__[ -3¢ _( 3(¢ _¢)
e CWZdtdt i ()¢dta()dt

+ c.c.]} + O(surface terms). (42)

Positivity of T, follows from ¥y — (mc/#)*f = 0 and
A>0in (28).

Energy is now defined as the zero component of the
four-momentum,

E= fw’f T, dz*, (43)

P

where we can take for 2 any spacelike hypersurface as in
(34). If we choose for = three-space, cf. (35), and the nor-
malization condition (36) (which we can also impose on
wave fields of the continuous spectrum, by integrating in
(37), (43) at first over a finite domain of F, and performing
later the limits) the integration in (43) is trivial and we get

E@t) = iﬁf(t)[fﬂfﬂ
2 dt dt

L om o) vee] | o
5 a (t)(pdt a(t) it +cc.|i. (44)

In this expression the space part ;ﬁ of the wave function
does not enter, but via@ thespectral variable A in (28), (29).

V. EXAMPLES
A. The static case a(f)=1in (1)

The time dependence of the positive/negative frequency
solutions of (25) is determined by Eq. (29). Using the nor-
malization condition (36), (38) we have

pr =0 Vexp(—int), ¢ =@+, (45)
with '
W= [(mcz/ﬁ)z +025(2 —6)/R 2]1/2. (46)

In (29) we have put £ = 0 and A as in (30). The local-
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ized wave ¢ is in this static metric the ground state with the
energy

#8502 —6) 1"

E(®) m2c*R ?

= #w(8) = m?|1 + , 47)

calculated from (44).
For the energy gap between E(8) and the lower edge of

the continuous spectrum located at § = 1 (cf. Sec. IV) we
have

E6)—E6=1)
1 # 1 #
- _ 1 2
2 mR? {( ¥+ 4 m?c*R?

x62(2—6)2+0(i4)]. (48)
c
The first term in (48) corresponds to the nonrelativistic

case already discussed in Ref. 1. If m = 0 we get instead of
(47)

E(6) = (fic/R)W6(2—9). (49)
In the conformally coupled case, £ =1/6, m =0, a

ground state does not exist, because it is then impossible to
generate wave motion in the late stages of the time evolution
by any combination of the fundamental solutions of Eq.
(29), compare the discussion of the following example.

B. De Sitter space: a(f)=sinh(Af), 0<I< »

R In this metric the curvature scalar in (6) is a constant,
R = 12A%/¢? and we put in (4) R =¢/A. A is connected
with the cosmological constant, cf. Refs. 2, 19, 3, and 4. By
introducing a new time variable in (29), compare (3),

= _f a~'(t)dt, sinh(At) =sinh~'(At’), (50)

and rescaling, ¢ (#) = sinh(At')@(¢’), we get for (29)
dz
dt"

Pt )+{A2[6(2 8) — 1] +sinh ~2(At")

X [(mc*/#)* + 12(€ — 1/6)A2] }¢ = 0. (51)

By trying the ansatz @(¢') =sinh'?+*(At’)
Xf(sinh®(At’)), o = sinh?(At’), we obtain for f (o) a hy-
pergeometric differential equation if we choose for a

=1+ 12(3 — &) — (mc*/Afh)~ (52)

In the following we assume @ < 0, @ = :ix. Furthermore
we define

Vvi=1-6(2-20). (53)
A fundamental system of solutions of (29) is then given by
@(2) = (Alx|) ~?sinh ~*?(At)cosh ~ *(At)
Xtanh”* V2(At)H(At),
H(At):=,F 3+ (v+ix)/2,
1 + ix; cosh ~2(Ap)),

and its complex conjugate @(¢). The solution in (54) we

1+ (v+in)/2,
(54)
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normalized according to (38). ¢(¢) is invariant with respect
to a change of sign of v (which is either real if 1<6 <2, or
imaginary, if 6 = 1 4+ is,0<s< 0, parametrizing the contin-
uous spectrum). A change of sign of «x corresponds to com-
plex conjugation.

The solution (54) admits the asymptotic expansion (for
t— )

@) = (Alx|) ~

1/22(3/2 + ix)e— At(3/2 + ix)

—2At

[ 2 +VA + —m] + O(e“‘"’)]
(55)
For t—-0 and Re(v) >0 we have @(f) ~c,t ¥~ if
Im(v) >0 we : obtain
@(t) ~t ~'[¢, cos(|v|log A?) + ¢, sin(|v|log Ar)], with
constants ¢,, ¢;, ¢, depending on v and «.
Inserting (55) into (44) wehaveforf— o« (and§ = 0Oin

i
1+ ix

K)
E(tv) = (AM/|k]) (1 + ) + O(e M)
=mc* 4+ O(#,e =), (56)
and
E(tv) —E(tv=0)
= [#AvZe = **/|x|(1 + k)] [ (26> — Y)cos(kAt)
— k(8 + 2c*)sin(kAD) | + O(e=*). (57)

For t—0 and Re(v) >0 we have E(t,v) ~cst ~2V 7},
e.g., E(t,v =) ~3(#iA/|k|) (At) ~ 2 and for Im(v) > 0, the
continuous spectrum, we get
E(t,v) ~t ~'[cs + ¢5 cos(|v|log At) + ¢, sin(|v|log A?) ],
with constants depending on v and «, so that E(z,v) > 0.

Discussion: The boundary condition concerning the
time dependence of the solution of (25) is that the negative/
positive frequency solutions shall behave like f(¢)
exp( + ig(?)) for t— o [with f(z) -0 and g(#) > + oo if
a(t) - o in (1)], when three-space gets flat and massive
particles come to rest. This is only possible if a® < 0 in (52).
Thus in the minimally coupled case £ = 0 m must exceed a
threshold value, mc?/Afi> 3, and if m = 0, £ must exceed 3
excluding the case of conformal coupling (£ =1).

In the static metric the spectral variable 4 in (28) is
directly related to energy by Eq. (47). This is not any more
so in the time-dependent case. Here A, which enters via v in
(53), plays the same part as the dimensionless £ in (25),
parametrizing the possible solutions of (25) under the given
boundary conditions. The only restrictions for £ and A are

a*(&,m) <0, and that A ranges over the spectrum of the
space part of the d’Alembertian in (26).

If we compare the energy of the wave field E(¢, v) with
the classical formula (24), we have for - « essentially the
same time dependence, with a slightly modified rest energy
in the quantum case. For -0 we also have

Equantum / Eclassica] = 0( 1 )

The parameters A and £ take over the part of i in (24),
determined by the classical initial conditions via (13).
Whatever the choice of A, for - « when the energies

Roman Tomaschitz 2577



approach their rest value, their difference gets of the order
Ofa*(1)).

Nevertheless there is a qualitative difference in the time
behavior of the energy of a localized state and that of an
unbounded state in the early phase of the expansion. In the
case of a square-integrable wave function, cf. (32), the main
part of the density |¢|* stays away from the boundary of
three-space (the open ends of Fon S_, cf. Sec. II), and for
a(t) -0 |¢|* gets concentrated, for the distances between
interior points of the spacelike slices # = const. go to zero.
The price to pay for that is localization energy. On the other
hand, if a(¢) - « the distances between interior points in-
crease to infinity, ¥ gets delocalized, resembling more and

more an unbounded state.
C. A universe that is Minkowskian with the topology ot

R*XIXS

If we take in (1) the linear expansion factor a(z) = At,
R =c¢/Ain (4),0<t< w0, the curvature scalar in (6) vanish-
es. Indeed, changing coordinates in (1), (4), cf. Ref. 2,

r/R iy 1+7/R?
1—7~/R?’ 1-7/R?’
we get the Minkowski line element in polar coordinates. But
in these coordinates space and time get mixed up in the
boundary conditions, and the wave equation is not separa-
ble.

Defining vasin (53), we get as a normalized fundamen-
tal system of Eq. (29) with A = A% ~26(2 — §) as in the
previous example

@(t) = (7/2) %= ™A =3t ' H P (mc*t /%), (59)
and its complex conjugate. (H (*’ is a Hankel function,*® the

phase factor is needed if v* <0.)
The asymptotic expansion of (59) to the order we need

r =2t (58)

is

(1) = ei”/4(‘h/mc2)1/2(At) —3/25 - imct /#i

X[1+iB(v)/t+Cw)/t 7>+ 0(t =], (60)
with
B(v) = _1_# (vz—i>,
2 mc? 4
-4 () -3)
8 \ mc? 4 4
For t— « we have with (44), (60)
E@tv) =mc*+ 0@t ~?), (61)
and
E(tv) —E(t,yv=0)
= —1 (#/mc*)t ~WA(V 4+ 15) + 0t —%). (62)

For t— 0 we have the same qualitative behavior of ¢ and
E as in de Sitter space [a(¢) = At=sinh(A2)]. Ifv>0,

E(tv) ~(172m) (1 + v)2*T (vImc2(mcit /%) 2~ 1,

e.g., E(ty =4)~3/2mc*(mc*t /#) ~?, and for the contin-
uous spectrum Im(v) >0

E(ty) ~t ~'[¢; + ¢, cos(|v|log mc*t /#)
+ ¢, sin(|v|log mc’t /#) ].
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All that has been stated about the de Sitter example ap-
plies here too, with obvious modifications. So the parameter
£in (25) does not enter here at all, because R = 0, and the
exponential decay in (57) is replaced by the algebraic one in
(62), as itisin @ ~2(?).

In the case of m = 0 we have for the positive frequency
solution of (29)

¢(t) =A—1/2K~l/Z(At)—le—ixlogAl, (63)

with k= [6(2 —8) — 11> 0. For E(t) we have from
(63)

Ety=# "'+« (64)
and E(t)a(t) = const., compare the red shift relation at the
end of Sec. I11. Since « must be positive that ¢ has the correct
time behavior for — w0, § cannot lie in the interval [1, 2],
which excludes a localized wave solution in the case of zero
rest mass in this universe, compare our discussion of de Sit-
ter space. The energy asymptotics of models whose expan-
sion factors have power law behavior in the asympototic re-
gions is discussed in Refs. 9 and 10.

VI. CONCLUSION

Open RW cosmologies of multiple spatial connectivity
show localization phenomena foreign to the simply connect-
ed open standard models of cosmology.

In the case of classical geodesic motion they manifest
themselves in the appearance of bounded chaotic trajector-
ies, in quantum mechanics as localized wave fields. These
phenomena are purely topological; the fact that a trajectory
is bounded or not does not depend on its energy (there is no
threshold value as in Hamiltonian mechanics), but is decid-
ed in the universal covering space of the manifold. If its cov-
ering trajectories emerge from the limit set of the covering
group it is bounded and chaotic, otherwise not.

If the metric is time dependent we no longer have a sim-
ple relation between the spectrum of the wave equation and
the energy of the corresponding quantum states. Neverthe-
less there is a qualitative difference in the time evolution of
the energy of a localized state and that of an unbounded one,
during the early stages of the expansion of the universe (see
the discussion of de Sitter space), but also there does not
exist something like a threshold value.

On the other hand, the Hausdorff measure of the limit
set A(T") on the boundary of the universal covering space
determines the spatial part of the localized wave field. The
Hausdorff dimension of A (I") determines the time asympto-
tics of the energy of the field at the beginning of the expan-
sion. Thus this fractal, quasi-self-similar set provides with-
out any (semi-classical) approximation the link between the
collection of the bounded chaotic trajectories and the local-
ized wave field on the manifold.
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