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L. INTRODUCTION

Among the general relativistic models that attempt to describe the rough overall
structure of the universe and its origins , Robertson-Walker geometries are today regarded as
the most likely candidates. Appealing to the principles of homogeneity and isotropy, a R.-W.

cosmology is locally described by a line element ds? = -dt2 + a%(t) do2, where do? is the line
element of of a 3-space of constant curvature. The cosmological expansion factor a(t)
determines the time dependence of the frequencies of light in the universe, and is according to
the observed red-shifts an increasing function of time. The second fundamental property of
a(t) is that it determines via Einstein's equations together with the Gaussian curvature of

3-space the energy density € and the pressure p of the light-matter content of the universe.

Though Einstein's equations.give the relation between €, p and a(t), they do not
determine the global topological structure of the universe, in particular they say nothing about
the topology of the spacelike 3-sections at a fixed instant of time. Homogeneity and isotropy
demand that these sections are 3-manifolds of constant curvature, but nothing prevents them
from having different geometries and even topologies at two different instants of time.

Traditionally three different geometries are considered: in the case of zero curvature
the 3-sections are Euclidean 3-space , for positive curvature one considers the 3-sphere, for
negative curvature a shell of the Minkowski hyperboloid. The topology of 4-space is then the
product of the real line or a semi-infinite interval with one of these topologies. Moreover
different spacelike sections at different instants of time are isometric after a simple rescaling.
The spacelike slices in the case of positive curvature are compact and such cosmologies are
called closed, the other two cases correspondingly open.

These three examples do by far not exhaust all possible topologies of 3-manifolds of
constant curvature, and in [14] we started to investigate the influence of a possible non-trivial
topology of the spacelike slices on the microscopic dynamics. Which topologies come in
question? Three-dimensional manifolds of constant zero or positive curvature are rather
exceptional, cf.[9], similar to positively curved or flat Riemann surfaces. The generic case are
manifolds of negative curvature, called hyperbolic. Such manifolds are best imagined in
hyperbolic space as polyhedra with their faces identified in pairs, cf.[5], analogous to the
2-torus as a square in the Euclidean plane. As a representation of hyperbolic space we may

choose the Poincaré ball B3, I1X1 <R, do?=(1- 1% 12/R2)2d%2. The geodesics in this
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ball are arcs of circles, and the the totally geodesic planes are spherical caps, both orthogonal
to the sphere S.., the boundary of B3. The polyhedral faces lie on geodesic planes and are
identified in pairs by glueing mappings, elements of the group of isometries of B3, which
happens to be the Lorentz group, cf.[1]. The polyhedra may also have faces lying on S,
which are not identified in pairs, and which constitute the boundaries of the manifold. Such

polyhedra have then infinite volume if measured by the Poincaré metric do2in B3,
The glueing transformations generate a discrete subgroup I of the Lorentz group, and
the images of the polyhedron F, I'(F) will create a tessellation of the Poincaré ball. There are

accumulation points of this tiling on the boundary of B3 (the fractal curves in Figs. 1,2) This
limit set plays a large role in the spectral theory of the Laplace-Beltrami operator on the
spacelike sections, for example its Hausdorff dimension determines the ground state
eigenvalue, cf.[3, 8].

There are the compact hyperbolic manifolds, whose polyhedra do not touch the
boundary of B3, providing closed models of negative curvature. The five Platonic solids,
regular polyhedra in B3, are typical examples of them, cf.[5]. The most important feature of
these finite-volume manifolds is that they are rigid [11], a given topology, defined by the
face-pairing can carry only one metric of constant negative curvature. Therefore it is not
possible to deform a Platonic solid a little, keeping a chosen face-identification, so that the
deformed polyhedron with the deformed glueing mappings generate again a tiling of B3. Thus
finite-volume hyperbolic manifolds are also rather exceptional, being too rigid to be proper
candidates for the spacelike slices.

The generic case of constant curvature 3-manifolds are thus hyperbolic manifolds of
infinite volume, their spacelike slices being open, infinite. Here the topological structure does
not fix the metric at all. The polyhedra, having free faces on S,,, are together with the

covering group I" deformable without destroying their tiling property. Such deformations can
be parametrized by a certain number (depending on the topology) of variables which
characterize geometrically the polyhedron, cf.[2, 4, 13], and one obtains so an explicit
realization of the deformation space of non-equivalent metrics on the topological manifold.The
metric of B3 is of course always induced on F. Thus a R.-W. cosmology is determined by

the choice of an expansion factor a(t) in the line element ds2, and by a path (I'(t), F(t)),
generically time-dependent, in the deformation space of an open hyperbolic 3-manifold,
cf.[13, 15].

In [14] we started to analyse R.-W. cosmologies whose spacelike slices have a non-
trivial topological structure, and the consequences that arise from the topology, both for
classical world lines and for scalar quantum fields. In [16] we discussed de Sitter space, i.e.

an expansion factor of the form a(t) = sinh(At), and spacelike slices of the form Ix S, Ian
open finite interval, S a Riemann surface (‘thickened surfaces’). We calculated the time
evolution of the energy of the corresponding wave fields, and the bearing of the spectrum of
the L.-B. operator of the 3-slices on this evolution.

In this paper we will give further examples, in particular we will figure out expansion
factors a(t) that are compatible with the conditions of positive pressure and energy, €, p > 0,
(in de Sitter space we have €=p=0 ), and we will discuss the energy asymptotics of the scalar
wave fields in the asymptotically flat regime, for t — oo, and towards the initial singularity,
fort— 0.

II. THE ENERGY OF SCALAR WAVE FIELDS AND THE SPECTRUM OF
THE LAPLACE - BELTRAMI OPERATOR OF THE SPACE SECTIONS

As pointed out in Section 1 the negative curvature (but not the finite or infinite volume
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Fig.1. Tiling induced on the boundary S., of the Poincaré ball B® by the universal
cover of the 3-manifold I x S. The convex hull of the fractal Jordan curve A(I)
determines a compact region C(AN (see Sec.3) in infinite 3-space F, where the

chaotic trajectories lie. g(S) = 19, 8 = 1.402140.001 (5 has been calculated by the
method of characteristic curves, cf.[15]).

Fig.2. As Fig.1, covering of S_, stemming from a spacelike section F of the
4-manifold. Fig.1(b) in [14] - Fig.1 - Fig.2 - Fig.2 in [16] represent a sequence of
non-isometric points on a path (F(t), I'()) in the deformation space of the topological
manifold I x S. g(S) = 19, 8= 1.423.
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of the space sections ) restricts crucially the possibilities of the asymptotic behaviour of the
cosmological expansion factor a(t).

The energy density € and the pressure p of the light-mass content of the universe are
simple functions of a(t) and its derivatives, cf.[7],

2 .2 A w2 2 A
=3.¢2 |-A" L_Asl] =_<_:2_[- a_a" A" 5.2
€ 381tk[a2 e 3 PTEm[Pa gt T @2.1)

and they have to be positive. In the following we put c2/8nk equal 1, A is the cosmological
constant.

A We assume in this paper that a(t) is strictly increasing. Then, in the case of a positive
A the conditions & 20, p 2 0 require exponential increase of a(t) for t — oo as it happens in de
Sitter space. If Ais negative a(t) cannot diverge for t — oo, in fact in this case we have an
oscillating universe a(t) = sin(At) whiclx may be treated analogously to the examples given
later on. From now on we assume A =0. Then the positivity conditions require an
asymptotically linear expansion factor a(t) ~ Atfort — oo . A is a constant setting the time
scale, a(t) is dimensionless. The case a(t) = At exactly has been sketched in [14], it leads to
€=p=0, but correction terms to this linear behaviour may change this situation considerably.
Luckily the conditions € > 0, p > O restrict the form of these correction terms too.

A. The asymptotically flat regime: time asymptotics for t — oo

We discuss a form of the expansion factor that exhausts qualitatively all possibilities
of the asymptotic behaviour of the solutions of the wave equation fort — oo .

Example |
a(t) = At + c(logAn)®. (2.2)

From (2.1) we have

£~ 6acA™t3 (logAt) ", p ~ 2ca(1-a)A 't HlogAt) * 2, if o =1: p ~ 2c2A 2 4logAt
@2.3)

Thus to ensure € > 0, p > 0 we have to require 0 <a <1,c > 0,0or a <0, c<0.The
case o. = 1, ¢ = 1 appears in [6, p. 222].
With the a(t) in (2.2) we will now calculate solutions of the wave equation and the

asymptotic behaviour of the energy evolution of these wave fields. The way to do this can be
found in [14] in some detail, and we sketch it here very shortly to keep track with self-

containedness. If we make a separation ansatz (t, ?) = W(i’) ¢(t) in the Klein-Gordon
equation

[D-§R'(mc/ﬁ)2]\lf=0, ©2.4)
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we obtain for the time dependence of the wave fields

¢ +3i’+[ 2+L2L+ ZR] =0
M a®r|m a2 R . 2.5)

We write in (2.5) m for mc2/ ; a denotes the wave operator on the 4-manifold and R is its
curvature scalar,

A
c2l a2 2 a2], (2.6)
€ is a dimensionless coupling constant of the field to the scalar curvature, and A appears in the

expansion factor. The radius of the Poincaré ball in Sec.1 we fix as c¢/A. Finally A is the
spectral parameter for the space part of the wave equation, and thus it varies over the spectrum
of the Laplace-Beltrami operator of the spacelike slices of the 4-manifold. In the example of
the manifold in Figs.1, 2 A can admit a discrete value 82-3), 6 the Hausdorff dimension of
the fractal limit set A(I'), 1 £ 3 < 2, which corresponds to the ground state eigenvalue of the
L.-B. operator, and it can vary in [1, e ), corresponding to the continuous spectrum. We
also assume that the 3-manifold (F, I') does not vary in time.

For the asymptotic expansions that we will carry out it is useful to eliminate the first
derivative in (2.5) by introducing a new dependent variable y : = a32 ¢,

2 - 22
o[+ 2 00 sl o s a0 [y-o @

To obtain the right asymptotic behaviour of the energy , E ~ mc2 in the limitt — oo,
we have to impose the normalization condition

VY- yy=122 (2.8)
on the solutions of (2.7).

Inserting a(t) of (2.2) into (2.5, 2.7) we calculate in the asymptotic order we need

9= Am12 (A ¥ eime 1 - iBrl+ Cr2 + ieDr2(oghd™ + 02 (oght™ )] 2.9
with
A=1-3E (ogAn™+ 15 €2 (10gA0)™ +O((ogAt’ */(AD®)

2
and B = (A-3/4)2m , C=- (A" + N2 - 15/16)/8m? . D is a real constant that does not enter
in the final result for the energy.

In [16] the following formula for the energy of a wave field has been derived:

_1 T = ) 2. af] & (0 +P }
E zha}:qxp.;.(p(p[mz*‘(x 6§)A a2+6€ a2 +6§a (W-HP(P) , (2.10)

it is always positive definite for 0 < 6§ < min[1, §(2-8)], which can be seen easily by
completing the first and the last term to a square. Inserting (2.9) into( 2.10) we arrive at

(m— mc2/h)

—mc2a2+ 1l B2 1 R *
E(\) = mc2A2 + PR (M-% 188) +O((logAt) /t3)- .
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From (2.11) we have in 'universal' quantities

E(\) - E(xz)~—$“‘ (l-w o1

If m=0 the solution (2.9) has to be replaced by

e =A"0 -1)""‘(/\0'“‘“’_1 [1+ O(@ogr®m) , (2.13)
with the energy
AV &1 o2
=B[Va-1 + (1-6801A1 |+ Oogh’s?) 2.14)

The frequency of the oscillation of (2.13) is

v=(iqy'er (2.15)

and thus we may write (2.14) as

E~hQ)v, (2.16)
with h(A~>o0) — h, h( A~>1) ~ = .The asymptotic expansions are carried out for a fixed A.
In the massive case (2.9) we have of course v = mc?/h.

An expansion factor of the form
a(t) = At+c(ApP 2.17)

can be treated completely analogously to (2.2): we have for (2.17)
e~-6cBA™AY? , p ~ - 2ep”A% AP 2.18)

positivity is insured for B > 0, ¢ < 0. One has to replace in the formulae of Ex.1 (logAt)* by

(At)~B. In particular the formulae for the energy and the frequency remain in the order given
exactly the same. Mixtures of powers and logarithms in a(t) do not alter anything
qualitatively.

B. The approach to the initial singularity: time asymptotics of the
fields and their energies for

In the limit t = O the expansion factor may go either to zero or approach a finite
value. Exponential decay of a(t) violates € > 0, p > 0, power law decay a(t) ~ (A)*, a.> 0
leads to a positive energy density and pressure in the range O <a < 2/3,
e~3a2t2,p~a2-3a)t? (2.19)

There is also the possibility a(t) = At strictly , without any corrections for t — 0, that
has been discussed in [14], and the two mentioned de Sitter examples. All these cases give

e=p=0.
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Logarithmic decay , 3(t) = (logl/A)® ,B >0, leads to
e~ 3pt2(logl/AY” , p ~ 2Bt2(logl/AD)" 2.20)

Models with a two-sided infinite time scale, a(t — -eo) strictly decreasing, are
incompatible with negative curvature, violating € >0,p > 0.

Example 2
at) = (A 0<a<3/2, t—0; 2.21)

the following discussion holds even true for 0 < o < 1, we will comment on this in Ex.7.

The wave equation reads according to (2.7)
v+ [m2 +At2+8B Az(At)-za] y=0 , (2.22)
with A =30(1-30/2)/2 + 6a2c- 1) ,B=A-6¢

In the lowest order asymptotic expansion that we will use we can drop the m2-term in

(2.22), a fundamental system is then 2, vi=11/4-A 20 ; V220 is always satisfied for
O<a<l, 0<65<1.

The normalized (see (2.8)) general solution of (2.5) is

0 =[ A-m A At)m-sa/z- v, A-mB( At)1/2 -302+ v][l + O(tz(“’))] 2.23)

with
A=2aci®2 | B = be- 92, sing =+1/2vab _ (2.24)

In choosing A, B as we did we have fixed a constant overall phase factor which

always drops out in terms like ‘P‘P o9 , and so it does not affect the energy.

The solution (2.9) of Eq. (2.5 ) for t — e we fixed by imposing the end-value

condition that for t — « ¢ should approach as closely as possible the Minkowski space
solution. This fixes in principle also a and b in (2.24), which are functionals of the expansion
factor a(t) via (2.5). The problem is of course that we do not know the function a(t) in the
intermediate regime, only its asymptotic limits. Therefore we will discuss the time
asymptotics of the energy leaving the numerical values of a, b undetermined. In the de Sitter
example in Ref.[16] we knew the expansion factor in the intermediate region, and we could
determine a, b by solving Eq.(2.5).

From (2.23) and (2.10) we get

E ~ %—M 42 A (32 + 172 -v + 66a)? + o26E(1- 68)] . 225)

We assume as always 0 < 6§ < minf1, 8(2-8)] to have the functional (2.10 ) positive
definite. For &= 1/6 this expression vanishes, and we have to calculate higher orders. For
€ =0and 0 <o < 1/3 it vanishes likewise.
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= i. = (1 -
Instead of (2.23) we have
0= A PAAY[1 (A + oA ™) + AB(AY 22 [1 + O(AY D) :
(2.26)

c is a real constant, its numerical value does not enter in E which reads now

~LaAAY™ [(1-0) 2 [B)2 + (1) A2
E~1nA®) [1-02 8% + -1y 14 ]. 227

For small o the energy in (2.25) is a factor t2 stronger divergent, compare also Egs. (2.34,
2.36).

=00<a<1/3.v=1/2 -

For the wave field and the energy we get in this case

9=A""[A + B0 *[1+ oa™ ] (2.28)

E~%—M(At)'3a IB|2(1-30) 2

(2.29)
the power in (2.25) would be t2+3%, again a factor of t2 stronger for small a.
0 = A2 [A + Blogad] [1+ 0(A)*? )
s (2.30)
~Lp-lg 2
E~phl® @231)

A and B are connected here via SIN® =11/ab see (224,

Finally, from (2.25) it follows that the energy for £= 0, 1/3<a <1 is given by
(2.29) with B replaced by A.

Example 3
a() = Gogl/AY™ B 5.0, ¢ > 0. (232)

According to (2.20) we have € > 0, p > 0. The normalized solution of (2.5) is
p=A" [A(logl/At)"“5 +BAt(log 1/At)'”“’§'3’] [1+0og1/at™)] ’ 2.33)

with A, B asin Ex.2(c). For & =0, 1/6 the O-term has to be replaced by O(tz(logllAt)7 ).
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The energy is

E~im-Lo (log1/Aty 1252 |12 B26E(1-6E)

(At) i 2.34)
a limit case of (2.25) for oo— 0.
For § = 0 we have instead of (2.34)
~1 38 g2
E 2 HiA (logl/At)™ [B| ’ (2.35)
and for £=1/6
~1 Brmiz 4 e 2
E 2flA (ogl/At)” ([B|* + (A-1) A% ) ] (2.36)

In (2.36) we have to assume A 2 1, 1. e. to exclude the ground state value A = 8(2- 9),
because of the positivity condition in (2.10).

Example 4 the case of finite initial radius, cf.[12],
a) =b+c(A)” o, b,c>0. 2.37)

Energy and pressure are positive for & < 1, and still singular,
2 2ca(l- g
- 36:22!!2 (At)2°"2 . p~2A co(l-o) (At)az

b . (2.38)
The solution of (2.5) is
= A2 32, 1 o 112, 3p
o =A"304[1 628 (A + o) + A% BA1+O®)]
with A, B as in Ex.2(c). For E we have
E ~LHAA)®2|A12 o2 £ 6E(1-
> BA(AY 1A% o b26&( 6§)’ 2.40)

special treatment is again needed for & = 0, 1/6.

@E=1/6
If we drop in (2.5, 2.7) the m? and a2 terms that contribute only positive powers we
can solve (2.5) by

o=A"Aa10) + AmBa'l(t)f al(tdt
(2.41)

with A, B as before. E approaches a finite value,

~LaAb Y IBI2 + A2 (b2m2A2 + 2 -
E zﬁAbl[lBl +1A12 ®*m2A2 + 1)]. 242

®E=0

With the same approximations as in (a) we have as independent solutions 1, I alddr.
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The normalized asymptotic solution of (2.5) is

0= A2Ab32 + ABYI2[1 +0()] | (2.43)
with the energy

1 2 E
E~5M[IBI2+IAI2(m2A +7~b2)], (2.44)

which goes over for b=1 and ®=@"2(1-00) 4 Eq. (47) of Ref.[14], likewise (2.42).

Example 5 alimit case of Ex.4,
a(t) =b +c(logl/AY” ¢ b, ¢ > 0. (2.45)
We have here always a positive € and p,

~3c20?1 202 0 2cal -o-1
€ logl/At . log1/At
) t2( g1/At) P~ 2 (log1/At) ’ (2.46)

otherwise this case is completely analogous to Ex.4, if we replace in the formulae their (At)*
by (log1/At)™. For the energy we obtain instead of (2.40)

E~L1ta—L_ (ogl/ay ™| ﬂsgi 65(1 - 62)

(A9 ; (2.47)
formulae (2.42, 2.44) hold still true.
Example 6 a limit case of Ex.4,
a(t) = b + cAt(logl/At)” o > 0, (2.48)

€ and p are positive,

2
~3c2A” 20 2ca A A0
e (log1/A)™ , p ~ 2L A (1og1/A1)
b2 bt , (2.49)

If £ does not take its two limit values 0, 1/6, we have as a fundamental system of (2.5)
t, 1- 6Ecb At (logl/At® , with

E~ %M(logl/At)m A2 i% 65(1-6)

(2.50)
The cases & = 0, 1/6 reduce to the preceding ones.
Example 7
Finally we discuss
a() =(An*, a>1,t— 0. (2.51)

These expansion factors violate the positivity of €, but we will also see why that happens, and
thus we think it is worthwhile to treat them here.
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The normalized solution of (2.5) reads

¢ =A"cosh@) e®2 § + A sinh(r) 02 2.52)
with
$ =B exp|i 1B 40"} (a0® {1+iCAan™ + 0D +
+ im?A%(AY™* D1+ 0@ Y] + Oé2i+) | (2.53)
and
Bod-g, cogl-2000-60

2 YB(1-0) = 2a+INB .

In (2.52) r and ¥ are parameters analogous to a, b, @ in (2.24).

The energy splits in
) E = Emonotonic + Eperiodic » (2.54)
with
Em = (cosh?(r) + sinh?(r)) BAA) * YB + O(*?) | (2.55)

E, = -2sinh(cosh(@)fi 1 a(1-6E)sin (2/B (-1 (AD"™ + 8)+ O(>9) | (5 56

The case § =1/6 needs again special treatment, instead of (2.53) we have

9 =BMexg{i B Ay a0 {1+ meA*(a0™* D + BAY™ +

+iF(At)2(a-1) + O(t3(°"l))] + (m2A'2(At)1+a)2 G[l + O(ta-l)] + O(m6 t3(1+0.)) }

with (2.57)
E==lL Gg=—o1_ _
4B 8B(a+1)?
F does not enter in the following equations that replace (2.55, 2.56),

o -2
Eq, = (cosh(r) + sinhz(r))fo[ 1B_, (A‘)w‘;z“ ] + O(B%2)
(At , (2.58)

and

. 2001 2 20y . 1o
Ep = -sinh() cosh() fiA (A0 A 5in(2YB (A" + 9) + O%2) 259

Form =0 Eg is identically zero.

141)
£

The frequency of an oscillation exp(iiB(At) t—0, &> 1, B >0 45t occurs in

(2.53, 2.57) and (2.56, 2.59) is asymptotically
v =1/At ~%&9— e
2m(At) , (2.60)
l-o l1-a
where At is determined by Blac-a0) " - BAY™ =2n o, En in (2.55, 2.58) we have
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then with § = B2 (a - 1),

Em ~ (cosh?(r) + sinh(r)) hv (2.61)

E in (2.54) oscillates with a frequency of 2v between the two curves

Ep(t) £ 2sinh(r) cosh(r) fit! a(1- 6&), (2.62)
and for & = 1/6 between '
En(t) + sinh(r) cosh() hA (AH™ 'm2Ao/B (2.63)

The break-down of formulae (2.1) based on classical relativistic hydrodynamics is not
surprising in a situation when energy density and pressure diverge to infinity, and phenomena

like (2.61) get dominant. Thus the conditions € > 0, p > 0, with € and p as in (2.1) are

unlikely to give a good selection criterion for expansion factors in the limit a(t) — 0. Thus we
have decided to give in Examples 2 and 7 a discussion of factors a(t) ~ (At)* for the whole

range of values 0 < & < o, and their bearing on the solutions of the wave equation.

II. DISCUSSION AND CONCLUSION

We outline at first the classical dynamics, namely geodesic motion on the space-time
manifold, and compare then with the remnants of classical chaos in the energy formulae
derived in Section 2. .

Applying the geodesic variational principle to the line element ds2 (Sec.1) on the
covering space R* x B3, cf.[10], we calculate readily the geometric shapes of the geodesics,

2 + 2Mr cos + (c/A)2 =0, (3.1)

arcs of circles centred at M| =M, orthogonal to the boundary S,, of B3 (c/A is the radius of
B?). Their time parametrization is given by

202+ 1/4-nV 1 - /AM)
n2+ 14 +nV 1 - /AM)

C and p are integration constants, p determines the hyperbolic length, possibly infinite, of the
arc that is run through during the whole evolution 0 < t < e= .The constant C fixes the location

of the arc on (3.1). The parameter y regulates the velocity via

= —vlc
watt) Yi-v2c2 |, (3.3)

for the definition of v and the derivation of (3.2, 3.3) see [14]. If 0 = 0 the particle is at rest,
N(t=0) =n(t = ) = C; if |1 = oo then (3.2) gives the time parametrization of light rays, (3.1)

holds also true for rays. For 1 = 0 or | = « we have r(t) — c/A, the trajectory
approaches the boundary S... This has interesting consequences for the chaotic properties of

geodesic motion in the polyhedron F, as we will see. From the positivity condition €, p>0

, N = CexpltA _dt

V1 +p2al(y) at) ’(3 )

r2(t) = (c/A)

VA
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in Ex.1, we know that a(t) ~ At for t — oo, With this asymptotic behaviour of a(t) in (3.2) we
have 1(t =oe, ) finite for K < o, and M(t = oo, p—rec) ~ const.u*! , approaching 0 or e for
v— ¢ according to (3.3).

Finally we discuss the behaviour of N for t — 0. With a(t) ~ (A)* ,0<a <1 asin
Ex.2, we see easily from (3.2) that n(t = 0, p) is finite and uniformly bounded away from O
and o for all u. The same holds true for Exs.3-6. But for a 2 1 as in Ex.7 we have
1n(t =0, p) = 0 or o regardless of the value of p.

Up to now we have discussed geodesic motion in R*x B3, the covering manifold of
our space-time manifold R*x F , F is the polyhedron in B3 that represents with its face-
identification via I (cf. Sec.1) a hyperbolic 3-manifold, a spacelike section at a given instant

of time. The concept of the covering space is the convenient tool to analyse the possibly very
chaotic motion in F in simple terms. Every trajectory in F is constructed from an arc of a

B3-geodesic (3.1).This arc intersects a certain number of tiles y(F) of the tessellation I'(F),
(cf. Sec.1 and [13, 15]). An arc piece lying in Y(F) is projected via y-! into F. The trajectory
in F consists thus of a2 number of arc pieces, whose initial and end points are identified by the
face-pairing transformations of F, to give a smooth curve in F. The time parametrization of

the B3-geodesic is inherited by the F-geodesic. In this way a trajectory is realized in R* x F.

The ergodic properties of the trajectory in F depend of course on the arc that is
projected. To discuss them we cut the arc into two pieces, say 1/A St<eo, and 0 <t < 1/A,
and consider the two limits t — oo, and t — O separately. The initial point t = 1/A lies always
in B3, the end point t = oo or t = 0 lies either in B3 or on its boundary S.,, depending on the
value of 1(e2) or n(0).

If the end point lies inside B3 the trajectory is bounded, i.e. lies inside a sphere of
finite hyperbolic radius. Moreover, because the accumulation points of the tiling, the limit set
A() in Figs.1,2 lie on S, the arc intersects only finitely many polyhedra, and thus there are
only finitely many arc pieces in F constituting the trajectory. Its evolution is perfectly
predictable and stable, because of its finite hyperbolic length.

If the end point lies on S, , T} = 0 or e, there are two cases to distinguish. If it lies
outside the limit set the trajectory intersects again only finitely many polyhedra, but clearly its
F-projection is now unbounded reaching at t = e or t = 0 a boundary of F on S_.. There is
also a positive Lyapounov exponent, but the propagation of the error in the initial conditions
is only proportional to the hyperbolic distance that is run through. If the end point lies in
A(T'), the arc intersects infinitely many tiles and that gives rise to chaotic behaviour of its
projection. The F-trajectory is bounded, lying in a finite compact domain C(A)\ of 3-space,
namely the intersection of the hyperbolic convex hull of the limit set with F, cf.[15]. It is
mixing there and even Bernoullian.

Finally there is the case that the end point of the arc to be projected lies in B3, but that

its prolongation terminates in A(T"). We have than a finite arc on a trajectory whose
F-projection is chaotic, as it may happen with massive particles. By increasing their speed,
i.e. by increasing the chaoticity parameter p in (3.2, 3.3), the end point can come arbitrarily
close to S.,, and the corresponding F-trajectory, though always regular can approximate its
infinite and mixing prolongation to any wished degree.
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To summarize, in the limit t — oo there is a finite compact region C(A)" in infinite
3-space in which chaotic motion can occur: rays have the Bernoulli property, and massive

particles can approximate chaotic motion for v — c arbitrarily well in the above described
way. A trajectory can enter this domain C(A)\" and it may get trapped there, but it can also go

through unaffectedly, depending on its lifts into the covering space B, if they end in A(T) or
not. Massive particles are always bounded, whereas rays are ecither Bernoullian or
unbounded.

The limit t — O : in the case of finite initial radius, Exs.4-6, particles and rays start to
spread out regularly from inside the manifold, which already exists at t = 0 with a well
defined metric and topology. In Exs.2,3,7 the 3-space contracts to a point, the distance
between two points in the polyhedron F goes to zero. Keeping this in mind one can have
nevertheless very different qualitative behaviour. Trajectories and rays in Exs.2,3 are regular

and bounded for t — 0, in Ex.7 they are either unbounded and regular or bounded and
Bemoullian, trapped in C(A)\[".

The time dependence of the energy in Eq. (2.11) and the frequency in (2.15) is
remarkably similar to that of a classical particle moving along a geodesic,

E=mc2 v1l+ '.12 a-2(t) = hv (3.4)

with  as in (3.3). For the wave length A we have, using de Broglie's relation as above,
Ma(t) = h/mcy, cf.[14]. ’

Concerning (2.12) we have classically the same time dependence, but there is a gap

A =1- 8(2 - 3), & the Hausdorff dimension of the limit set A(I"), in the spectrum of the L.-B.
operator of the spacelike slices between the ground state wave function and the wave fields of
the continuous spectrum.

From the eikonal , cf.[14],

y(tr,e) =- wf al(t) dt + Y(r.0)
1A (3.5)

R -1
we derive easily V= c/h~tl (ez’wm - 1) . This and the Einstein relation is again reflected in
(2.15),(2.16). The ground state is excluded for massless particles, because the spectral
parameter in (2.15) must be larger than 1.

The exponents in Exs.2,3 determining the singular behaviour of ¢ and E depend only
on the exponent in a(t) and on &, the geometric coupling to the curvature scalar, neither the
mass nor the spectral parameter enter in them. & ranges in the interval [1, 1/6], cf.(2.10), the
limits & = 0, 1/6 are discontinuous in the power laws. There is no periodicity of ¢ and E in the

limit t — 0. The same holds true for Exs.4-6 (finite initial radius), in particular the classical €
in (2.38) and E in (2.40), have the same singular power laws, determined solely by the

exponent in a(t). Only the limits & = 0, 1/6 have a finite energy.

Finally we discuss Ex.7. The energy in (2.55) and (2.58) has the same asymptotic
behaviour as the classical E in (3.4) (which is not the case in Exs.2-6, except for
& =0, 1/6).The solution of the wave equation in (2.52) is periodic, and in (2.60), (2.61) we
have the proportionality of E and v like in (3.4) for m > 0. For rays we get from the eikonal in
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(3.5) (with a(t) ~ (At)*, o >1), and Einstein's relation the same time dependence as in the
massive case, E ~ (At)*ho.

In (2.60) the spectral variable A (it should not be mixed up with the time dependent
wave lengths in this section, we use the same notation) enters in the frequency, as it does in

Ex.1form =0, and the positivity condition in (2.10) imposes again restrictions on A and &.
For m > 0 and 6 < 8(2-3) there is a gap in the frequency (2.60) increasing in time fort — 0,
corresponding to the gap AA in the spectrum already observed in the limit t — e in Ex.1.
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