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ABSTRACT
An account on the physical impact of a topologically and metrically evolving space-time is
given. We discuss the appearance of a chaotic nucleus in the infinite and unbounded 3-
space, topologically induced CP violation, the existence of faster-than-light particles, and
their topological localization.

1. The chaotic center of the Universe

Our basic assumptions are that the Universe is open and that its spacelike slices are
multiply connected and negatively curved (extended Robertson-Walker cosmologies).
Under these conditions there exists a finite region in the infinite 3-space in which the world
lines are chaotic. On more elaboration on that see Refs. 1 and 2 and the caption of Fig. 1.
It is beyond any doubt that some mechanism to generate chaos is needed to achieve the
remarkable uniformity of the galactic background. In these cosmologies it is the local
instability of the world lines and the global topology which induce chaos in a finite
domain, the Center of the Universe, whose size scales with the expansion factor.
Moreover there are regular trajectories which are shadowed over long times by chaotic
ones. This could provide an explanation that perfect equidistribution of the galaxies has not
really been attained>-6.

2. The violation of the space-reflection symmetry by topological self-
interference

The classical geodesic equations are still reflection invariant in a multiply connected
universe, but the situation is quite different concerning quantum mechanics. A space-
reflected wave packet can wrap around a tiny geodesic loop and overlap with itself. This
gives rise to self-interference, and the unitarity of the parity operator is lost. In particular
CP and CPT are already broken in the free Dirac equation, cf. Refs. 1, 5 and 6. Self-
interference is quite an inevitable phenomenon in. multiply connected spaces, cf. Refs. 7
and 5.

The three-space is multiply connected, and two points can be joined through
various topological channels by geodesics, which are now local minima of a global

variational problem. In the simply connected universal covering space of the 3-manifold,
the space-reflection P is of course unique for a given center of reflection C', which lies

in the middle of the geodesic arc joining a point X and P~(X). This is in fact the definition
of the space reflection, in analogy to Euclidean space. The covering space is here
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hyperbolic space H3, which is geodesically complete. A space reflection in the 3-manifold
we define via the universal covering projection 7, PZ : = mo P . The center of reflection
C is now a point in the fundamental polyhedron F which represents the 3-manifold in the
covering space. More generally, we can define space reflections Pz :=Pfoy, yel (the
covering group). If the connectivity of the manifold is finite, only finitely many of these
reflections Pg are really different from each other. All of them have the property that the
center of reflection C lies in the middle of a geodesic joining an arbitrary point X in F with
Pg(X ).

Fig. 1. The horizon at infinity of the Poincaré half-space H3. A spacelike slice (F, I') is realized in H3 as
a polyhedron F with a face-identification. The identifying transformations of F generate the covering group
I' which, applied to the polyhedron, gives a tessellation T(F) of H3 with polyhedral images. This
tessellation induces by continuity also a tiling on the boundary of H3, thatis depicted here. The qualitative
structure of the singular set depends on I, for quasi-Fuchsian groups like here it is a Jordan curve, for
Schottky groups a Cantor set, cf. Refs. 3and 4. ((F, I') =1 xS, S a Riemann surface, g(§) =19,
&(A )=1.45.) From the fractal limit set A(I') one can easily determine the chaotic or nearly chaotic
trajectories, which shadow each other over long times. Their lifts have initial and end points in or close to
A(T). Projecting them into the 3-space (F, I') one obtains the chaotic nucleus. Once the tiling is generated
it is easy to construct the covering projection, (x): = ¥ "!(x), the point x lies in the tile (F). Likewise, a
geodesic arc crossing a tile %(F) is mapped by 7 via y-! into F.
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3. Tachyonic dynamics in the open Universe

If the cosmic expansion factor has turning or inflexion points, it can happen
that a tachyon moves within a finite time an infinite distance, with a finite though
unbounded velocity. We start with the Lagrangian L=g, t#t" of a Robertson-

Walker geometry with negatively curved 3-slices, more specifically, gy, =-c2,
8; =% DR 2t'28,.j , in the Poincaré half-space H3 with coordinates x¥ := (z,1), zeC ,
>0, cf. Ref. 1.

dxi dxJ

We have immediately one integral of motion, cz(%)z 8 s €. Without

loss of generality we can choose € =21 or 0, by rescaling the parameter s. We have
€ = 1 for particles, € = 0 for rays, and € = -1 for tachyons. We assume that tachyons

have a positive mass. Then we define the energy-momentum vector as

pH=mc d;—:‘ =:(c2E, p). Clearly we have php, = -em2c2, and we define a velocity

v in analo;gy to Minkowski space that parametrizes this hyperboloid, cf. e. g. Refs. 8
and9,

,E= . It is sufficient to study a trajectory
el1-]¥]|¥c2 el1-19]%c2
perpendicular to the complex plane, all other trajectories we obtain by applying to it
some transformation of the invariance group of H3 . Its time parametrization is given by
T

HD) = K1) exp| £ j dra'(7) (1+ ev2c2a2(n) 12|,
B
We consider from now on only £=-1 , the tachyonic case. Moreover we assume

that a(7) is increasing in an interval [7,,7_], and that a(7_) =0 .The integration
constant v which determines the energy, we choose as v = c-1a(z, ). Then we have

a(t)|-12 a(t)| 12
~ _rta = [ et ol ~ -1
«17) ~ const. | 77| **, & Ra( || and |V]~c a0 |77, for

7—7,. Similar formulas we get if in addition (1) =0. Therefore, if a(z,) is a

turning or inflexion point, and if we choose the initial energy as we did, then we have
always #(7_) = 0 or . This means that the tachyon, starting at some point xp in the

interior of H3 , reaches within a finite time A7=1_- 7, the boundary at infinity of

H3. The tachyon can reach within a time A7 every point in H3 , however remote from
Xp , and it arrives with a finite fraction of its initial energy there. Thus tachyons can
transfer signals over an infinite distance within a finite time, which is a very useful
property in an infinite universe. Contrary to Newtonian mechanics there is no external
force needed to achieve this, since tachyons move freely and covariantly along
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geodesics in accordance with the principle of general relativity. Finally, a tachyon can
get topologically localized. If the spacelike slices are multiply connected, it can get
trapped like a particle or ray in their chaotic nucleus, cf. Ref. 6. It comes then within a

time At arbitrarily close to every point, it is dense there.
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Discussion

N. Sakai: Should we expect that your mechanism is going to explain the CP-violation in
kaon systems ?

R. T.: Yes, you should. I think CP-violation appears quite generically on the microscopic
level, but usually weakly enough that it escapes detection. I think it is a basic quantum
mechanical interference phenomenon, related to the microscopic topology of space-
time. The traditional deliberate use of symmetry breaking interactions in the
Lagrangians I regard as a heuristic description.

E. Elizalde: Is your definition of the 'Center of the Universe' covariant ?

R. T. : Yes, I define it as the region in which the world lines are mixing. Liapounov
instability is defined with respect to special coordinate frames, but 'mixing' or the
Bernoulli property are generally covariant concepts. The limit set of the covering group
(as defined in the caption of Fig. 1) is likewise a covariant construct. The mixing
phenomenon can be understood in terms of the local hyperbolicity of the 3-space
metric, and the fact that the global topology can confine trajectories which would
otherwise, in the simply connected universal covering space, tend to infinity.



