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We study tachyons conformally coupled to the background geometry of a Milne universe.
The causality of superluminal signal transfer is scrutinized in this context. The cosmic
time of the comoving frame determines a distinguished time order for events connected
by superluminal signals. An observer can relate his rest frame to the galaxy frame,
and compare so the time order of events in his proper time to the cosmic time order.
All observers can in this way arrive at identical conclusions on the causality of events
connected by superluminal signals. An unambiguous energy concept for tachyonic rays is
defined by means of the cosmic time of the comoving reference frame, without resorting to
an antiparticle interpretation. On that basis we give an explicit proof that no signals can
be sent into the past of observers. Causality violating signals are energetically forbidden,
as they would have negative energy in the rest frame of the emitting observer. If an
observer emits a superluminal signal, the tachyonic response of a second observer cannot
reach him prior to the emission, i.e. no predetermination can occur.

1. Introduction

Superluminal particles (tachyons) are a possibility suggested by a straightforward

modification of the formalism of classical relativistic mechanics, they are a natural

extension of the classical particle concept. However, relativistic theories of super-

luminal motion1–7 are marred by causality violation as Lorentz boosts may change

the time order of events connected by superluminal signals: If a uniformly moving

observer O1 sees a tachyon T moving from space point A to space point B, then a

second observer O2 related to the first by a Lorentz boost may well see it heading

from B to A. [To see a tachyon moving from A to B just means to observe the

change effected by the tachyon at A (emission) prior to the change effected at B

(absorption). By definition, emission always happens prior to absorption, without

reference to energy transfer, at this point.] ObserverO1 concludes that the change at

A (effected by the emission of T ) causes the change at B (effected by the absorption

of T ). Observer O2, however, concludes that the change at B (emission) causes the

change at A (absorption). Both observers base their conclusion on the assumption
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that the cause precedes the effect. For observer O1, the cause is the change that

takes place at space point A by the emission of the tachyon, and the effect is the

change taking place at B by its absorption. The same holds for observer O2, but

with A and B interchanged. What appears as emission to observer O1 is absorption

for observer O2, and vice versa, as the time order (proper time) in the two rest

frames is different. According to the relativity principle, the conclusions of both

observers concerning cause and effect must be regarded as equally real, as physically

equivalent. This leads to a violation of the traditional causality principle, which may

be stated as follows:8 (i) Every effect has a cause. (ii) The cause precedes the effect.

(iii) The distinction of cause and effect is unambiguous. The third condition simply

means that all observers come to the same conclusion on what is cause and effect.

The conclusions of observers O1 and O2 are evidently different.

Remarks. (1) In Refs. 3 and 5 cause and effect are defined by energy loss

and energy gain, respectively, which is a relativistically invariant characterization if

properly done, but it conflicts with condition (ii) of the causality principle. (2) Emis-

sion and absorption are defined in a frame dependent, geometric way: We say that

in the rest frame of a given observer the tachyon is emitted at space point A

and absorbed at B, if A is the initial and B the terminal point of its trajectory,

parametrized by the observer’s proper time.

In Robertson–Walker cosmology, there exists a coordinate frame in which all

galaxies and galactic observers have constant space coordinates, despite their

mutual recession. A universal cosmic time is defined by this comoving frame, and

thus a distinguished time order. Every observer can compare the time order of

events in his proper time to the universal cosmic time order, and all observers

arrive in this way at the same conclusion on the causal connection of events related

by superluminal signals, even though the cosmic time order may be inverted in

their proper time.

In Minkowski space, there seems to be at first sight a very straightforward

generalization of the energy concept for subluminal particles to tachyons. But it

turns out that the sign of the energy of tachyons is not preserved under Lorentz

boosts. There has been a rescue attempt3,6 to reinterpret tachyons of negative

energy as antiparticles with positive energy, similar to the negative energy solu-

tions of the Dirac equation, and to define so a positive energy in an invariant way.

However, this does not solve the causality problem.8 In the theory advanced in

this paper, the energy of tachyons is defined by means of the universal cosmic

time of the comoving frame without using the quantum mechanical antiparticle

concept.

A conformal classical field theory of tachyons (Proca equation with negative

mass square), the spectral energy density of a tachyon background radiation, and

the interaction of tachyons with matter are studied in Refs. 9–11. In this paper,

we focus on the classical mechanics of conformally coupled tachyons, obtained from

this field theory in the semiclassical limit.
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We consider as background geometry the Milne universe,12 a flat Robertson–

Walker cosmology with a linear expansion factor and an open, negatively curved

three-space. In this cosmology the rest frames of uniformly moving observers can be

synchronized by Lorentz boosts without resorting to locally geodesic neighborhoods,

but otherwise the reasoning in this paper also applies to any other Robertson–

Walker cosmology.

In Sec. 2, we discuss the world-lines of conformal tachyons, both in comoving and

globally geodesic frames, and define an unambiguous energy concept for tachyons

based on the comoving reference frame. We study tachyonic signal exchange effected

by two galactic, i.e. comoving, observers, and show that no causality violation or

predetermination can occur. In Sec. 3, we investigate superluminal signal exchange

between nongalactic, uniformly moving observers.

The causality proof is given as follows. A geodesic observer OA emits a tachyon

TA, which is absorbed by a second uniformly moving observer OB. As soon as the

absorption takes place, observer OB emits as his response a tachyon TB, which

is in turn absorbed by observer OA. In Secs. 2 and 3 it is demonstrated that in

the geodesic rest frame of observer OA the response TB does not arrive prior to

the emission of tachyon TA; we show that in the rest frame of observer OA the

emission of tachyon TA is not predetermined by the response TB to it. The proof

makes use of the tachyonic energy concept developed in Sec. 2. An observer can

only emit tachyons of positive energy, and hence the geometric possibility of sending

signals into the past of observers, as pointed out at the beginning of this section,

is energetically excluded. In Sec. 4 we present our conclusions. In the appendix, we

give the causality proof for a static Minkowski universe.

2. The Energy Concept for Conformal Tachyons

At first we consider tachyonic rays in RW coordinates (comoving frame). The line

element of the Milne universe reads as

dλ2 = −dτ2 +

(
τ

u

)2

(du2 + |dz|2) ; (2.1)

we use as coordinate representation of the three-space the Poincaré half-space H3,

with Cartesian coordinates u, z; u > 0 cf. Ref. 13. The manifold defined in this

way is isometric to the forward light cone.14 In the following we consider geodesic

motion along the u-semiaxis, and put z = dz = 0, as H3 is homogeneous. The

isometry which maps the (τ, u)-plane onto the (t, x)-plane (t2 > x2, t > 0) of the

light cone reads as

t =
τ

2
(u+ u−1) , x =

τ

2
(u− u−1) ,

τ =
√
t2 − x2 , u =

√
(t+ x)(t− x)−1 .

(2.2)
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Along the u-semiaxis, the geodesic world-lines of a particle with negative mass-

square are determined by

−τ̇2(λ) +

(
τu̇(λ)

u

)2

= µ2 ,
τ2u̇

u
= s (2.3)

(derived from L = −µ
√
gµν ẋµẋν), s is a real integration parameter. The tachyon

mass µ varies in cosmic time inversely proportional to the expansion factor, µ =

m/τ , m > 0 in our notation. There is some formal analogy to the cosmic time

variation of mass suggested in Dirac’s large numbers hypothesis.15–17 However, the

tachyon mass is not a rest mass and should not be taken too literally. The concept of

tachyonic charge, and atomic emission and absorption processes effected by tachyon

radiation are discussed in Ref. 9. The conformal time scaling of the tachyon mass

is necessary to achieve the conformal coupling of the wave equation for tachyons,

which results in the tachyonic world-lines

u(τ) = κτδ(s) , δ(s) := s(s2 −m2)−1/2 , (2.4)

via the semiclassical limit.10 These superluminal rays solve (2.3). Due to the con-

formal coupling, tachyonic world-lines are a straightforward extension of the ray

concept of geometric optics; light rays are obtained by putting δ = ±1 in (2.4).

In the comoving frame, energy and momentum of conformal tachyons moving

along the rays (2.4) are defined in analogy to subluminal particles, by

E =
s

δτ
=

m√
v2

co − 1
, p =

su(τ)

τ2
, |p| = |s|

τ
=

mvco√
v2

co − 1
, (2.5)

vco = |δ|. (The sign of δ evidently determines whether the tachyon moves the u-

semiaxis up or downwards.) In the forward light cone, we obtain the trajectories

(2.4) as

t(τ) =
τ

2

(
u(τ) + u−1(τ)

)
, x(τ) =

τ

2

(
u(τ) − u−1(τ)

)
, (2.6)

parametrized by cosmic time. By transforming (E, p) in (2.5) like a contravariant

two-vector, we define in the forward light cone

E =
s

τ2

(
t

δ
+ x

)
=
µ sign(t+ δx)√

v2 − 1
, (2.7)

p =
s

τ2

(
t+

x

δ

)
=
µv sign(t+ δx)√

v2 − 1
, (2.8)

with mass and velocity

µ =
m√

t2 − x2
, v =

p

E
=

x/t+ δ

1 + δx/t
. (2.9)
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In deriving (2.7)–(2.9), we made use of

dt

dτ
= τ−1(t+ δx) ,

dx

dτ
= τ−1(δt+ x) , (2.10)

along the rays.

Remarks. (1) Negative energy indicates a time inversion, dt/dτ < 0, cf. (2.7) and

(2.10). (2) Equations (2.7) and (2.8) are not a covariant definition of energy and

momentum, as they are based on the comoving reference frame. The same holds

for the time variation of the tachyon mass, likewise defined by means of the cosmic

time of the comoving frame.

The time coordinate t(τ) in (2.6) admits a minimum at τ∞,

τ∞ = κ−1/δ

(
δ − 1

δ + 1

)1/(2δ)

, u∞ =

√
δ − 1

δ + 1
, (2.11)

t∞ = τ∞
|δ|√
δ2 − 1

, x∞ = τ∞
− sign(δ)√
δ2 − 1

, (2.12)

where u∞ = u(τ∞), t∞ := t(τ∞), and x∞ := x(τ∞). u∞ does not depend on the

integration constant κ, but solely on the tachyon velocity in the comoving frame.

The velocity (2.9) in the geodesic frame diverges at (t∞, x∞), since

x∞
t∞

= −1

δ
= tanh(log u∞) ,

√
t2∞ − x2

∞ = τ∞ . (2.13)

This minimum of t(τ) is the reason for double images of tachyons in geodesic rest

frames. In the (t, x)-frame, two tachyons appear in the interval [t∞,∞], whereas

the tachyon is not visible at all in [0, t∞]. One of them carries positive and the other

negative energy, because

E(τ → 0)→ −∞ , E(τ →∞)→∞ , E(τ∞) = 0 , (2.14)

cf. (2.7), (2.6) and (2.4). These limits are independent of the sign of δ (i.e. of the

orientation of the comoving velocity). Negative energy in individual rest frames can

lead to double images16,17 discussed after (2.21) and in Sec. 3.

The boost

t ′ = (1− α2)−1/2(t− αx) , x ′ = (1− α2)−1/2(x− αt) , (2.15)

in the light cone corresponds via (2.2) to the transformation

τ ′ = τ , u ′ = η−1u , η := (1 + α)1/2(1− α)−1/2 , (2.16)

|α| < 1, η > 0, in comoving coordinates (2.1). Galactic observers are char-

acterized by constant space coordinates in the comoving frame, u = κ̃. In globally

geodesic coordinates, the world-line of a galactic observer κ̃ reads x = αt, α :=

(κ̃2−1)(κ̃2 +1)−1, cf. (2.2); his time coordinate ranges in [0,∞]. Galactic observers

are related by Lorentz boosts (2.15). The forward light cone can be introduced as

geodesic rest frame for every galactic observer κ̃, just by applying the Lorentz
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boost (2.15) with α as above, so that his world-line reads x ′ = 0 in his rest

frame t′2 − x′2 > 0, t ′ > 0. In the comoving frame, this boost corresponds to a

simple rescaling of the space coordinate, u ′ = u/κ̃, leaving cosmic time unchanged,

cf. (2.16).

Next we study a superluminal signal exchange in the comoving galaxy frame. A

tachyon TA is emitted at (τA, uA = 1) and absorbed at (τB , uB), uB > 1, τB > τA,

by two galactic observers OA and OB sitting at uA = 1 and uB, respectively. The

trajectory of the tachyon is given in (2.4). We have to assume δ > 1 in (2.4), so

that the tachyon can reach uB. The integration constant κ in (2.4) and the arrival

time read as

κA = τ−δA , τB = u
1/δ
B τA . (2.17)

The geodesic rest frame (t, x) of observer OA, who emits TA, is linked to the

comoving frame by (2.2). In the (t, x)-frame, the initial and terminal points of the

trajectory of TA are(
tA
xA

)
=

(
τA
0

)
,

(
tB
xB

)
=
τB

2
(uB ± u−1

B ) . (2.18)

As uB + u−1
B > 2, we find tB > tA. Moreover u∞ < 1, cf. (2.11), so that no

double image can emerge in the (t, x)-frame in the relevant time interval [tA, tB],

and the energy of tachyon TA is positive, cf. (2.7). (For a double image to occur, the

tachyon must pass through u∞ in the comoving frame.) The world-line of observer

OA is of course x = 0, and the world-line of observer OB reads as x = α̃t with

α̃ = (u2
B − 1)(u2

B + 1)−1.

To obtain the geodesic rest frame (t ′, x ′) of observer OB, we apply a Lorentz

boost (2.15) with α̃ as defined above or, equivalently, a coordinate change u ′ = u/uB
in the comoving frame, followed by the transformation (2.2). In the (t ′, x ′)-frame,

the world-line of observer OB is x ′ = 0, and the world-line of observer OA reads

as x ′ = −α̃t ′. In the comoving (τ, u ′)-frame, the world-line of the tachyon is given

by (2.4) with κ = κA/uB; it moves there from u ′ = 1/uB to u ′ = 1. Its initial and

terminal points in the geodesic (t ′, x ′)-frame are(
t ′A
x ′A

)
=
τA

2
(u−1
B ± uB) ,

(
t ′B
x ′B

)
=

(
τB
0

)
. (2.19)

This is at first glance quite similar to (2.18); however, t ′A < t ′B only holds if

δ <
log uB

log
(
(uB + u−1

B )/2
) , (2.20)

cf. (2.19) and (2.17). If (2.20) is violated, a time inversion occurs, which can easily

be understood as follows. Equations (2.11) hold with κ = κA/uB, so that u∞ < u−1
B

is equivalent to

δ < (u2
B + 1)(u2

B − 1)−1 . (2.21)
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Inequality (2.21) implies (2.20), but not vice versa. [If we define

f(u) := (u2 − 1) log u− (u2 + 1) log
(
(u+ u−1)/2

)
,

we readily find f ′(u) > 0 for u > 1, and f(u) > 0 follows by inspecting the limit

u→ 1.] Accordingly, if (2.21) holds, then observer OB at x ′ = 0 will see a tachyon

with positive energy emitted at (t ′A, x
′
A) and absorbed by him at a later instant t ′B,

cf. (2.19). If, however, inequality (2.21) is violated by a high tachyonic velocity in

the comoving frame (δ = vco > 0), then u−1
B < u∞ < 1, and observer OB will see

two tachyons emerging at (t ′∞, x
′
∞) [as defined in (2.12), with κ = κA/uB] moving

in opposite directions, one toward him with positive energy, and the second toward

observer OA at x ′A with negative energy. If inequality (2.20) is violated too, then

the second tachyon arrives at x ′A before the first reaches observer OB .

At any rate, E(t ′B , x
′
B) > 0, cf. (2.7) and (2.19); tachyon TA arrives with positive

energy at x ′ = 0, where observer OB is located. The tachyon energy undergoes a

sign change [so that E(t ′A, x
′
A) < 0] if (t ′∞, x

′
∞) lies on the trajectory, which requires

in the comoving (τ, u ′)-frame u−1
B < u∞ < 1 to hold. (u ′∞ = u∞, independent of

the rescaling of the u-coordinate.) But in this case there appear in actual fact two

tachyons, one with positive and the other with negative energy.

Next we consider the response of the galactic observer OB at u = uB, which

emits at (τB , uB) a tachyon TB defined by

u = κBτ
δ̂ , κB := uBτ

−δ̂
B , (2.22)

compare (2.4). For tachyon TB to reach observer OA at u = 1, we need δ̂ < −1;

then its arrival time is τA,rec = u
−1/δ̂
B τB .

In the geodesic rest frame (t, x) of observer OA, the absorption of TB takes

place at

(tA,rec, xA,rec) = (u
−1/δ̂
B τB, 0) , (2.23)

[correspondingly via (2.2) to (τA,rec, u = 1) in the comoving frame] and the emission

of TB happens at (tB, xB) as given in (2.18). Analogous to (2.11), a double image

of TB appears in the (t, x)-frame whenever

û∞ :=

√
|δ̂|+ 1

|δ̂| − 1
(2.24)

lies on the trajectory of TB connecting the two observers OA,B in the comoving

(τ, u)-frame. Tachyon TB reaches observerOA with positive energy, E(tA,rec, 0) > 0,

but if û∞ < uB, then observer OA sees two tachyons emerging at (t̂∞, x̂∞) [defined

as in (2.11) and (2.12), with κ and δ replaced by κB and δ̂, respectively], one

moving toward him with positive energy, and the other toward OB with negative

energy, cf. (2.14). A double image does not occur if û∞ > uB [equivalent to |δ̂| <
(u2
B + 1)(u2

B − 1)−1, cf. (2.21)]; then the energy of the tachyon is positive along the

trajectory connecting the observers. In any case,

τA = tA < tA,rec = u
−1/δ̂
B u

1/δ
B τA , (2.25)
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with uB > 1, δ > 1, and δ̂ < −1, cf. (2.23) and (2.17), so that the emission of

tachyon TA at (tA, x = 0) happens prior to the absorption of TB at (tA,rec, x = 0),

and accordingly a predetermination of signal TA cannot be effected by the response

TB of observer OB .

In the geodesic rest frame (t ′, x ′) of observer OB, the coordinates of the absorp-

tion of tachyon TB (by observer OA) read(
t ′A,rec

x ′A,rec

)
=
τA,rec

2

(
u−1
B ± uB

)
, (2.26)

and the emission of TB by OB happens at (t ′B, x
′
B) = (τB , 0) [upon arrival of

tachyon TA, cf. (2.19)]. Clearly, t ′B < t ′A,rec, and tachyon TB has positive energy in

this frame. No double images can appear, since TB moves in comoving coordinates

(τ, u ′) from u ′ = 1 to u ′ = u−1
B and does not reach û∞.

3. Superluminal Signal Exchange Between Uniformly

Moving Observers

The geodesic world-lines of uniformly moving observers in the Milne universe (2.1)

read in comoving coordinates

u(τ) = κ̃

(
−ν +

√
τ2 + ν2

ν +
√
τ2 + ν2

)1/2

, (3.1)

with κ̃ > 0, and ν is a real integration constant determining the speed of the

observer (subluminal particle), vco = τu−1du/dτ = ν(ν2 + τ2)−1/2. Equation (3.1)

is readily obtained from (2.3) if we put there µ2 = −1, and we focus on geodesic

motion along the u-semiaxis of H3. The choice ν = 0 evidently corresponds to

galactic observers discussed in Sec. 2. The trajectories (3.1) are mapped into the

forward light cone by (2.2),

x = vt− 2κ̃ν

κ̃2 + 1
, v :=

κ̃2 − 1

κ̃2 + 1
, (3.2)

with t ranging in the interval [|ν|κ̃− sign(ν),∞]. This (t, x)-frame is the geodesic rest

frame of a galactic observer (κ̃ = 1, ν = 0), and relates to the geodesic rest frame

(t ′, x ′) of an observer (κ̃, ν) by a Lorentz boost (2.15) with α = v. The world-line

of observer (κ̃, ν) reads in the (t ′, x ′)-frame x ′ = −ν, with t ′ ranging in [|ν|,∞].

The geodesic rest frame (t ′, x ′) of observer (κ̃, ν) is therefore a truncated copy of

the forward light cone, t′2 − x′2 > 0, t ′ > |ν|. In this frame, the galaxies radially

emanate from x ′ = 0, and because the observer is located at x ′ = −ν, the galactic

recession appears anisotropic to him, and so does the background radiation. In the

following, we will frequently use the comoving frame (τ, u ′), u ′ = u/κ̃, which is

connected to the (t ′, x ′)-frame via (2.2), cf. the discussion preceding (2.19).
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As in Sec. 2, the first part of the signal exchange consists of a tachyon TA emitted

at (τA, uA = 1) and absorbed at (τB , uB), uB > 1, τB > τA; the trajectory of this

tachyon is defined in (2.4) and (2.17). Emission and absorption are now effected

by two observers OA and OB, respectively, who move along world-lines as defined

in (3.1). Their integration parameters (κ̃A, νA) and (κ̃B , νB), respectively, relate to

the indicated emission and absorption events by

κ̃A =

(
νA +

√
τ2
A + ν2

A

−νA +
√
τ2
A + ν2

A

)1/2

, κ̃B = uB

(
νB +

√
ν2
B + τ2

B

−νB +
√
ν2
B + τ2

B

)1/2

. (3.3)

The integration constants νA,B may have either sign; if it is positive, the observer

moves the u-semiaxis upwards. Evidently, 1/κ̃A < 1 if νA > 0, and 1/κ̃A > 1 if

νA < 0. Likewise, for observer OB, uB/κ̃B < 1 if νB > 0, and uB/κ̃B > 1 if νB < 0.

The geodesic rest frame of observer OA is defined by coordinates (t′′, x′′) cor-

responding via (2.2) to the comoving frame (τ, u′′), with u′′ = u/κ̃A. Likewise, the

rest frame of OB is denoted by (t ′, x ′) as in Sec. 2, corresponding to comoving

coordinates (τ, u ′), u ′ = u/κ̃B. In the (t′′, x′′)-frame, the world-line of observer

OA reads as x′′ = −νA, and the world-line of observer OB is given by (3.2) with

(κ̃ = κ̃B/κ̃A, νB). In the (t ′, x ′)-frame, the world-line of OB reads x ′ = −νB, and

the trajectory of OA is defined by (κ̃ = κ̃A/κ̃B, νA).

In the geodesic rest frame (t′′, x′′) of observer OA, emission and absorption of

tachyon TA take place at(
t′′A
x′′A

)
=
τA

2
(κ̃−1
A ± κ̃A) =

(√
τ2
A + ν2

A

−νA

)
,

(
t′′B
x′′B

)
=
τB

2

(
uB

κ̃A
± κ̃A

uB

)
,

(3.4)

which follows from u ′′ = u/κ̃A and (2.2). In the corresponding comoving (τ, u ′′)-

frame, tachyon TA moves from u ′′ = 1/κ̃A to u ′′ = uB/κ̃A, and therefore a double

image of the tachyon appears in the (t ′′, x ′′)-frame, provided κ̃−1
A < u∞ < uBκ̃

−1
A

holds, with u∞ as defined in (2.11), cf. the discussion following (2.13). [u∞ only

depends on the velocity of the tachyon, and is not affected by a rescaling of the u-

coordinate, unlike τ∞ in (2.11).] In this case, E(t ′′A, x
′′
A) < 0, and E(t ′′B , x

′′
B) > 0, cf.

(2.7), which follows from (2.14), compare the discussion after (2.21). The tachyon

energy undergoes a sign change along the trajectory at (t ′′∞, x
′′
∞) [defined as in (2.11)

and (2.12), with κ = κA/κ̃A]. If u∞ > uB/κ̃A, then the energy of the tachyon is

negative along the track connecting the observers, and a time inversion occurs,

t ′′A > t ′′B. If, finally,

u∞ < κ̃−1
A , (3.5)

then the tachyonic energy (2.7) is positive along the world-line from OA to OB , and

the cosmic time order is preserved, t ′′A < t ′′B.
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The energy of a tachyon is positive in the rest frame in which it is emitted,

otherwise it would appear there prior to its emission. Accordingly, condition (3.5)

is a necessary constraint on the velocity [i.e. on δ in (2.17)] of tachyon TA; only

galactic observers (νA = 0) can emit tachyons of any velocity. The reference in (3.5)

to the observer’s velocity in the comoving frame [as determined by the integration

constant νA, see after (3.1)] once more underscores the nonrelativistic nature of

superluminal signals; they are defined with respect to the galaxy background, the

comoving reference frame. Condition (3.5) is made more explicit in the remark

following (3.9).

Next we consider tachyon TA in the rest frame (t ′, x ′) of observerOB. The events

(τ∞, u ′ = u∞) and (t ′∞, x
′
∞), indicating the splitting of the tachyon trajectory, are

defined as in (2.11) and (2.12), with κ = κA/κ̃B. If κ̃−1
B < u∞ < uBκ̃

−1
B holds,

then E(t ′A, x
′
A) < 0 and E(t ′B, x

′
B) > 0, because E in (2.7) is positive for τ > τ∞,

and negative for τ < τ∞, cf. (2.14), and hence a double image appears in the

(t ′, x ′)-frame. Otherwise, the tachyonic energy E(t ′, x ′) is positive along the track

connecting the observers if u∞ < κ̃−1
B , and negative if u∞ > uB/κ̃B. Tachyon TA

may well appear to observer OB with negative energy or as double image, as it is

not emitted in his rest frame.

The second part of the signal exchange consists of a tachyon TB as defined in

(2.22), emitted at (τB, uB) by observer OB as his response to tachyon TA. Tachyon

TB is absorbed by observer OA at (τA,rec, uA,rec), where τA,rec is the solution of

κBτ
δ̂
A,rec = κ̃A

−νA +
√
τ2
A,rec + ν2

A

νA +
√
τ2
A,rec + ν2

A

1/2

= uA,rec . (3.6)

Because observer OA moves subluminally, he cannot arrive prior to tachyon TA
at uB, and therefore δ̂ < −1 is necessary for tachyon TB to reach observer OA, as

already assumed after (2.22). It is also clear from the velocities that the tachyon hits

the observer exactly once, the solution τA,rec is unique, and evidently τA,rec > τB .

There are no restrictions on the subluminal velocities of the observers OA,B, they

may move up or down the u-semiaxis.

By making use of the comoving (τ, u ′′)-frame defined after (3.3), and applying

(2.2), we readily find for the absorption of TB by observer OA in his rest frame

(t ′′, x ′′) the coordinates(
t ′′A,rec

x ′′A,rec

)
=
τA,rec

2

(
uA,rec

κ̃A
± κ̃A

uA,rec

)
=

(√
τ2
A,rec + ν2

A

−νA

)
. (3.7)

The emission of TB coincides of course with the absorption of TA at (t ′′B , x
′′
B) as

defined in (3.4). In the (τ, u ′′)-frame, tachyon TB moves from u ′′ = uB/κ̃A to

u ′′ = uA,rec/κ̃A. (Since δ̂ < −1, we have uA,rec < uB.) Accordingly, if uA,recκ̃
−1
A <

û∞ < uBκ̃
−1
A , with û∞ as defined in (2.24), then a double image of the tachyon

emerges in the (t ′′, x ′′)-frame. In this geodesic frame, the energy of TB at absorption
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is positive, E(t ′′A,rec, x
′′
A,rec) > 0, cf. (2.7) and (2.9) (with δ → δ̂), and we find

E(t ′′B , x
′′
B) < 0 at emission. If û∞ < uA,rec/κ̃A, then the energy of TB is negative

along its trajectory connecting the observers, and positive if û∞ > uB/κ̃A. Since

tachyon TB is not emitted by observer OA, there are no constraints on its energy

in his rest frame.

A similar reasoning, though with very different consequences, applies with

regard to tachyon TB in the geodesic rest frame (t ′, x ′) of observer OB. Emission

and absorption events for tachyon TB there read as(
t ′B
x ′B

)
=
τB

2

(
uB

κ̃B
± κ̃B

uB

)
,

(
t ′A,rec

x ′A,rec

)
=
τA,rec

2

(
uA,rec

κ̃B
± κ̃B

uA,rec

)
, (3.8)

analogous to (3.4) and (3.7). In the comoving (τ, u ′)-frame, the tachyon moves from

u ′ = uB/κ̃B to u ′ = uA,rec/κ̃B. If uA,recκ̃
−1
B < û∞ < uBκ̃

−1
B , then a double image

appears in the (t ′, x ′)-frame, so that E(t ′A,rec, x
′
A,rec) > 0 and E(t ′B , x

′
B) < 0. If

û∞ < uA,rec/κ̃B, then the energy of TB is negative along its track connecting the

observers, and positive if

û∞ >
uB

κ̃B
. (3.9)

As tachyon TB happens to be emitted by observer OB, its energy is positive in

his rest frame, and hence condition (3.9) is a necessary constraint on the velocity

of TB, i.e. on the integration constant δ̂ in (2.22). This is quite analogous to the

constraint (3.5) on the velocity of tachyon TA.

Remark. The velocities of the tachyons TA,B in the comoving frame read vtach,A =

δ > 1 and vtach,B = δ̂ < −1, respectively, cf. (2.5). The velocities of the observers

OA,B at emission time read vobs,A,B = sign(νA,B)(1 + τ2
A,B/ν

2
A,B)−1/2, see after

(3.1). Condition (3.5) is equivalent to vtach,Avobs,A < 1, cf. (3.3) and (2.11), and

condition (3.9) to vtach,Bvobs,B < 1. If a geodesic observer moves with speed vobs in

the comoving reference frame, then he can only emit tachyons whose speed satisfy

vtach(τem)vobs(τem) < 1 (3.10)

at emission time. It is easy to see, by virtue of locally geodesic coordinates,

cf. the appendix, that this condition for tachyon emission also holds in any other

Robertson–Walker cosmology, the product being taken in the three-space metric

of the comoving reference frame. Condition (3.10) is equivalent to the positivity of

the tachyon energy in the locally geodesic rest frame of the emitting observer. (The

observer may be a decaying particle, and energy–momentum conservation holds.11)

Evidently, condition (3.10) does not give a bound on |vtach| if tachyon and observer

head in sufficiently opposite directions.

Finally, observer OA cannot receive the response TB prior to the emission of

TA; no predetermination can occur, because in the rest frame (t ′′, x ′′) of observer

OA the cosmic time order τA < τA,rec is preserved: t ′′A < t ′′A,rec, which is an obvious

consequence of (3.4) and (3.7).
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4. Conclusion

Cosmic time defines a distinguished time order to which every observer can relate by

connecting his geodesic rest frame to the comoving galaxy frame. The high isotropy

of the microwave background makes it in practice possible for every observer to

determine his movement in the galaxy background, and in this way to infer the

cosmic time order of events connected by tachyons. The time order in the proper

time of galactic or uniformly moving observers may well be inverted as compared to

the cosmic time order of the comoving reference frame, but all observers can arrive

at the same conclusion on the causality of the observed process. The causality of

superluminal signal transfer is unambiguously defined by the cosmic time order, so

that the traditional causality principle as stated in the Introduction is adhered to.

Cosmic space is generated by the galaxy grid, which provides a natural reference

frame. The state of rest can be defined with respect to the galaxy background,

and uniform motion and rest become easily distinguishable states. Whether an

observer is at rest or in uniform motion with respect to the microwave background,

this can really be unambiguously decided, quantitatively, by measuring the dipole

anisotropy of the background temperature, caused by a Doppler shift. To figure out

the causal connections in an experiment involving tachyons, one has to determine

the motion of the laboratory relative to the galaxy background. The solar barycenter

is moving with some 370 km/s, cf. Ref. 18, fast enough to even neglect the rela-

tive motions of the Earth in a first approximation. The introduction of the galaxy

frame as reference frame suggests an absolute cosmic space–time and constitutes

a fundamental departure from the relativity principle, in particular from the rela-

tivistic interpretation of Lorentz transformations and the relativistic definition of

tachyonic energy.

Like the causality concept, the energy concept for tachyons is based on cosmic

time and the comoving galaxy frame. Tachyonic energy and momentum are defined

in this reference frame analogous to the energy of subluminal particles, and in

geodesic rest frames by means of coordinate transformations. In this way the sign

of tachyonic energy is unambiguously defined, cf. Sec. 2. Whenever the energy of

a tachyon is negative in a geodesic rest frame, this indicates time inversion to the

observer, the cosmic time order of events connected by the tachyon is interchanged

in his proper time. Hence an observer can infer the cosmic time order either from

the energy of the tachyon relating the respective events, or from his own movement

relative to the background radiation, as pointed out above. In this context we

demonstrated that no signals can be sent into the past of observers by means of

conformally coupled tachyons.
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Appendix A. Causality and Tachyonic Energy in a

Minkowski Universe

We consider a static galaxy distribution; the underlying space–time geometry is

Minkowskian with the line element ds2 = −dt2 + dx2. The frame in which the

galaxies have constant space coordinates is denoted by (t,x). We consider two

observers P1 and P2 uniformly moving along the x-axis

P1 : x = vP1 t , |vP1 | < 1 ,

P2 : x = vP2 t+ x2 , |vP2 | < 1 ;
(A.1)

x2 is an arbitrary constant. All velocities have zero y and z-components. At

(t0, x0 = vP1 t0) observer P1 emits a tachyon T1 of velocity vT1 , |vT1 | > 1, which

moves according to

x = vT1 t+ (vP1 − vT1 )t0 . (A.2)

The velocity vT1 is chosen in a way that the tachyon collides with observer P2. This

collision takes place at

tcoll = (vP2 − vT1 )−1[(vP1 − vT1 )t0 − x2] , xcoll = vP2 tcoll + x2 . (A.3)

For the collision to take place at all,

t0 < tcoll (A.4)

must be satisfied, which we henceforth assume as condition on vT1 . Upon receipt of

T1, observer P2 emits a tachyon T2 at (tcoll, xcoll), carrying his response. We obtain

for the trajectory of this tachyon

x = vT2 (t− tcoll) + xcoll . (A.5)

Tachyon T2 hits P1 at

tterm = (vP1 − vT2 )−1(vP2 − vT1 )−1[t0(vP1 − vT1 )(vP2 − vT2 ) + x2(vT2 − vT1 )] ,

xterm = vP1 tterm ,
(A.6)

provided

tcoll < tterm . (A.7)

This condition means a restriction on vT2 .

We denote by (t ′, x ′) the rest frame of observer P1, which is related to the

galaxy frame (t, x) by the Lorentz boost

t ′ = γ1(t− vP1 x) , x ′ = γ1(x− vP1 t) , γ1 := (1− |vP1 |2)−1/2 . (A.8)
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The rest frame (t ′′, x ′′) of observer P2 is connected to (t, x) by the same transforma-

tion with vP1 replaced by vP2 . In the rest frame (t ′, x ′) of P1, the time coordinates

of the events (t0, x0), (tcoll, xcoll), and (tterm, xterm) read respectively

t ′0 = γ−1
1 t0 , (A.9)

t ′coll = γ1(vP2 − vT1 )−1[(vP1 − vT1 )(1− vP1 vP2 )t0 − x2(1− vT1 vP1 )] , (A.10)

t ′term = γ−1
1 tterm . (A.11)

Evidently,

t ′0 < t ′term (A.12)

holds; in the proper time of observer P1, the response T2 of observer P2 does not

arrive prior to the emission of T1. No predetermination arises in this communication

process; the response T2 cannot be sent into the past of observer P1 and influence

his emission of T1. Conditions (A.4) and (A.7) ensure that in the galaxy frame (t, x)

tachyon T1 moves from P1 to P2 (and not vice versa), and that T2 moves from P2

to P1. Since observer P1 emits tachyon T1, relation

t ′0 < t ′coll (A.13)

holds in his rest frame, which gives a further restriction on the velocity vT1 of tachyon

T1, cf. (A.20). As mentioned in the Introduction, we use the terms emission and

absorption in a geometric sense without reference to energy transfer. If a tachyon

is emitted by a moving observer, then this emission appears as such in his own

rest frame. Inequality (A.13) [which boils down to (A.20)] gives a restriction on the

velocity by which a tachyon can be emitted in a moving frame.

In the rest frame (t ′′, x ′′) of P2, we find

t ′′0 = γ2(1− vP1 vP2 )t0 , γ2 := (1− |vP2 |2)−1/2 , (A.14)

t ′′coll = γ2(vP2 − vT1 )−1[(vP1 − vT1 )(1− |vP2 |2)t0 − x2(1− vT1 vP2 )] , (A.15)

t ′′term = γ2(1− vP1 vP2 )tterm . (A.16)

As soon as observer P2 absorbs tachyon T1, he emits as response a tachyon T2.

Analogous to (A.13),

t ′′coll < t ′′term , (A.17)

holds in the rest frame of P2, because T2 is emitted by this observer. (In the rest

frame of observer P1, however, t ′coll may well exceed t ′term.)

The restrictions imposed on the tachyon velocities by inequalities (A.4), (A.7),

(A.13) and (A.17) can be made more explicit. Inequality (A.4) may be written as

(vP1 − vP2 )t0 sign(vP2 − vT1 ) > x2 sign(vP2 − vT1 ) . (A.18)

Inequality (A.13) reads as

(vP1 −vP2 )t0 sign[(vP2 −vT1 )(1−vP1 vT1 )]>x2 sign[(vP2 −vT1 )(1−vP1 vT1 )] , (A.19)
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and if combined with (A.18) it gives

1− vP1 vT1 > 0 . (A.20)

Inequality (A.7) reads

(vP1 − vP2 )t0 sign[(vP2 − vT1 )(vP1 − vT1 )(vT2 − vP1 )]

> x2 sign[(vP2 − vT1 )(vP1 − vT1 )(vT2 − vP1 )] , (A.21)

and (A.17) gives

(vP1 − vP2 )t0 sign[(vP2 − vT1 )(vP1 − vT1 )(vT2 − vP1 )(1− vP2 vT2 )]

> x2 sign[(vP2 − vT1 )(vP1 − vT1 )(vT2 − vP1 )(1− vP2 vT2 )] . (A.22)

Combining (A.21) and (A.22), we obtain, analogous to (A.20),

1− vP2 vT2 > 0 . (A.23)

Inequalities (A.18), (A.20), (A.21) and (A.23) are equivalent to conditions (A.4),

(A.7), (A.13) and (A.17) on the velocities vT1,2. Inequalities (A.18) and (A.21) just

make sure that the tachyons reach the respective observers, and analogous condi-

tions hold for subluminal signal transfer. Conditions (A.20) and (A.23), however, do

not have a subluminal analog; if an observer moves with speed vobs in the comoving

reference frame, then he can only emit tachyons whose speed satisfy vtachvobs < 1,

as discussed in Sec. 3.

Finally, we turn to the energy concept for tachyons in a Minkowski universe,

and demonstrate that there is no way to construct a tachyonic perpetuum mobile.

We define in the galaxy frame tachyonic energy and momentum as E = mṫ(s) and

p = mẋ(s), with positive mass. The Lagrangian reads L = −m
√
|ṫ2 − ẋ2|. We

choose the curve parameter s in a way that ṫ(s) > 0 and ṫ2 − ẋ2 = ε, where ε = 1

for particles and ε = −1 for tachyons. Hence, the energy of freely moving particles

and tachyons is by definition positive in the galaxy frame. Energy and momentum

can be parametrized by the 3-velocity,

E =
m√

(1− v2)ε
, p =

mv√
(1− v2)ε

. (A.24)

In the limit of infinite speed, the energy of a tachyon is zero, but its momentum

stays finite (mass times a unit vector); this gets important in elastic tachyon–particle

collisions.11 Next we define tachyonic energy in the rest frame (t ′,x ′) of an observer

freely moving with speed u, |u| < 1, in the galaxy background. This frame is linked

to the galaxy frame (t,x) by the Lorentz boost

t ′ = γ(t−ux) , x ′ = x− γut+ (γ− 1)(xu)u|u|−2 , γ := (1−u2)−1/2 . (A.25)

Energy and momentum are defined in the moving frame by means of the differential

version of (A.25),

E ′ := γ(E − up) , p ′ := p− γuE + (γ − 1)(pu)u|u|−2 . (A.26)
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For particles, ε = 1, this is just the transformation law for the four-vector (E,p) in

(A.24). However, in the case of tachyons Eqs. (A.24) is not a covariant definition of a

four-vector, valid in all uniformly moving frames, because Lorentz transformations

may change the sign of E and p if ε = −1, cf. (A.30). Therefore, the galactic

reference frame is necessary to unambiguously define energy and momentum in

the rest frames of uniformly moving observers, unless one is willing to introduce

an antiparticle concept for classical tachyons, cf. Sec. 1. This energy concept for

tachyons is nonrelativistic, though it has a familiar relativistic look in a Minkowski

universe.

The transformation law for velocities is readily obtained from (A.25),

v ′ = γ−1(1− uv)−1[v− γu + (γ − 1)(vu)u|u|−2] . (A.27)

Here v and v ′ may be sub- or superluminal. If uv→ 1, then |v ′| → ∞; in this limit

the tachyon approaches infinite speed and zero energy in the rest frame of observer

u. It follows from the differential version of (A.25) and its inverse that

(1 + uv ′)(1− uv) = 1− u2 . (A.28)

Thus 1− uv and 1 + uv ′ have equal sign. We obtain from (A.27)

1− v2 = γ−2(1 + uv ′)−2(1− v′2) , (A.29)

and from the preceding formulas we easily derive

E ′ =
m sign(1− uv)√

(1− v′2)ε
, p ′ =

mv ′ sign(1− uv)√
(1− v′2)ε

, (A.30)

compare Eqs. (2.7) and (2.8). The energy of a tachyon is positive in a moving

frame only if 1−uv > 0 or, equivalently, if 1+uv ′ > 0. We recover here conditions

(A.20) or (A.23) for tachyon emission in moving frames. The energy of tachyons

is positive in the respective rest frames in which they are emitted, cf. Sec. 3. This

positivity means a restriction (3.10) on their (initial) velocities, which excludes

predetermination. If 1−uv > 0, no time inversion can occur: As dt ′ = γ dt(1−uv),

cf. (A.25), the time intervals dt and dt ′ have the same sign.

It follows from (A.24) and (A.26) that

E ′ = mγ
1− |u||v| cos θ√

v2 − 1
; (A.31)

v and u are the velocities of tachyon and observer in the galaxy frame, and 0 ≤ θ ≤
π. E ′ is positive in the limit |v| → 1, and for |v| → ∞ it attains its minimum value,

E ′min = −mγ|u| cos θ. Hence, only a limited amount of energy can be extracted

from a tachyon, as the energy of tachyons is bounded from below in the rest frames

of uniformly moving observers.
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