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The instability of world lines in Robertson—~Walker universes of negative spatial
curvature is investigated. A probabilistic description of this instability, similar to
the Liouville equation, is developed, but in a manifestly covariant, non-
Hamiltonian form. To achieve this the concept of a horospherical geodesic flow
of expanding bundles of parallel world lines is introduced. An invariant measure
and a covariant evolution equation for the probability density on which this flow
acts is constructed. The orthogonal surfaces to these bundles of trajectories are
horospheres, closed surfaces in three-space, touching the boundary at infinity of
hyperbolic space, where the flow lines emerge. These horospheres are just the
wave fronts of spherical waves, which constitute a complete set of eigenfunctions
of the Klein—-Gordon equation. This fact suggests that the evolution of the
quantum mechanical density with the classical one be compared, and asymptotic
identity in the asymptotically flat region is found. This leads, furthermore, to the
study of the time behavior of the dispersion of the energy and the coordinates
and the energy-time uncertainty relation, and identity in the late stage of the
cosmic evolution is again found. In an example it is finally demonstrated that
this identity can persist in the early phase of the expansion with a rapidly varying
scale factor, provided the fields are conformally coupled to the curvature.

I. INTRODUCTION

One of the most remarkable features of Robertson-Walker (RW) cosmologies of negative
spatial curvature is the instability of the classical geodesic trajectories, the probabilistic char-
acter of world lines. This instability, foreign to both the closed models and the models with
Euclidean spacelike sections, does not seem to have gained the attention in the literature that
it deserves.

The most efficient and quantitative way to describe such systems that are highly sensitive
with respect to the choice of the initial conditions is that of statistical mechanics, in terms of
classical probability densities and covariant evolution equations. We study the dispersion of
these densities in terms of classical energy-time uncertainty relations, designed after the con-
ventional quantum mechanical ones. We do this in quite a general context, for arbitrary
expansion factors, however, we restrict ourselves in this paper to topologically simply con-
nected cosmologies, and take as the spacelike slices the Minkowski hyperboloid (mass shell).
The formalism that we adopt is nevertheless designed in a way that it is generalizable to
cosmologies whose spacelike slices are arbitrary hyperbolic manifolds.'~ In such cosmologies
exact relations between bound-state wave fields and chaotic trajectories have been derived, and
it is clear that the next question we have to pose is whether there persist such relations for wave
fields of the continuous spectrum and the remaining unstable but not chaotic trajectories. In the
case of the trivial topology of the mass shell, neither bound states nor chaotic trajectories exist,
we only have to deal with unstable world lines and the continuous spectrum of the wave
equation.

We shall study the Klein—-Gordon evolution of wave packets, their densities and currents,
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and compare them with the evolution of the classical horospherical flow, its density, and
current. We obtain, with a suitable choice of the initial conditions, the asymptotic identity
between the classical and quantum evolution of the mentioned quantities. Likewise, we get this
identity for the wave mechanical and the classical AE At, which shows that the instability of
the classical world lines can produce, even quantitatively, the same dispersion phenomena as
quantum mechanics. We demonstrate this in two examples, studying the time evolution of
AE At during the initial and final stage of the cosmic expansion.

The paper is organized as follows. In Sec. II we introduce the concept of a horospherical
flow. That needs some introductory comments. Usually a nonrelativistic geodesic flow is
treated in a Hamiltonian context, as an initial value problem, by specifying the initial coordi-
nates and momenta. Now, because of the Lyapunov instability of the flow lines with respect to
a variation of the initial conditions one has in practice to pass over to the Liouville equation,
and to study the evolution of the probability density. Our relativistic approach is guided by
quantum mechanics. Let us consider a spherical wave, generated at some point at infinity of
hyperbolic space. Its wave fronts are horospherical,’ namely, closed surfaces of constant
positive curvature, tangent to the boundary at infinity of hyperbolic space at some point, say 7.
The orthogonals to these horospheres are just the geodesics issuing from 7. These expanding
bundles of parallel geodesics constitute our horospherical flow. Having chosen a point 7 from
which the bundle emerges, a flow line is, in principle, modulo its instability, determined by
choosing a point of space-time through which it passes, and the energy at this point. We give
the explicit construction of this horospherical flow and its action, which is closely related to the
space part of the wave fields of the Klein—-Gordon equation.

In Sec. III we construct the invariant measure of the horospherical flow, and the covariant
evolution equation of the classical density. Instead of the initial distribution of the momentum,
we have now to specify the initial spread of the energy and the width of the cone (=spread of
the 7 values) from which the flow lines emerge. In Sec. IV we compare the quantum evolution
according to the Klein~Gordon equation with the evolution of the classical density under the
horospherical flow, and proof asymptotic equivalence in a period of slow variation of the
expansion factor. The expansion in the late stage of the cosmic evolution is very likely to be
adiabatic, if the curvature of three-space is negative. In Sec. V we study the dispersion of
classical and quantum densities. In particular, we calculate the time evolution of the product
AE Ax, the dispersion of the energy and the coordinates. As is not surprising after Sec. IV, we
get equivalence of the classical and quantum evolution for #— «, but we also show in an
example that this equivalence can persist for -0 and rapidly varying expansion factors. In Sec.
VI, finally, we come to our conclusions and discuss the foregoing a little with respect to RW
cosmologies whose spacelike slices are multiply connected hyperbolic manifolds.

We start by summarizing some basic formulas.'~ The scalar wave fields we consider satisfy
the Klein-Gordon equation

[O—E&R— (me/#)*]9=0, (1.1)
where O is the Laplace-Beltrami operator of the RW-line element,

do*=—c* di +a*(1)ds%, (1.2)
in RX B3 or RXH® (see the Appendix, where we also summarize our basic notation). ds® is
the line element of hyperbolic three-space, a(¢) the expansion factor, & the coupling to the

curvature scalar R of (1.2).
If we make the separation ansatz,

P=@(t)P'~5(x,p), (1.3)
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with the Poisson kernel P as in Eqs. (A2) or (A9), we arrive at Eq. (A3) for the space part,
and obtain

a(1)
¢+3am @+ [(mc¥/#)2 4+ A2 (1+57)a=2(t) +2ER () 19=0, (14)
for the time dependence. We normalize the solutions by imposing
Hpp—¢p) = £ia3(t). (1.5)
We want to study the dispersion of the density,
1 Jd_ _d
p= ( Eve 2ab 2 P \I') (L.6)
constructed of wave packets,

—(s—50)? (£—&p)?
BT g |#ds (D)

1 1 .
VO =5 [ IR e

In Refs. 2 and 3, the following formula for the energy of the wave fields (1.3) has been
derived:

L a d _[(mc*\?
e(s,) =3 fia [ (¢,;+6€<P ;) (¢,:+6§<P ;) +<P<P[ (—;{)

-2
+A* [ +1-6£]a"2+66(1—6€) :—z”, (1.8)

@ subject to (1.4) and (1.5).
Using the general formula® for the energy-momentum tensor for solutions of (1.1), and the
orthogonality relations (A4), one readily obtains

—(—o)]

E(V,t) _T_ f e(s,t)exp

for the energy of the wave packets (1.7).

ds, (1.9)

Il. THE CLASSICAL HOROSPHERICAL FLOW AND ITS BOUNDARY ACTION

The simplest way to calculate the classical flow and its action S is to map geodesics in B¢*!
(which are circular arcs orthogonal to the boundary sphere .S;) onto straight lines through the
origin and to solve then the one-dimensional problem. The mapping can be performed by
Mobius transformations, leaving the hyperbolic line-element invariant; see the Appendix.

The reduced, i.e., one-dimensional Lagrangian reads as

2 _ o 2 4a? dr\?
L=e(g) e (&) =20 b

with the solutions
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y c 1 dt 22
r(t;to, )=R tanh[ﬁ J;o a(t) \/T+A'V:2C’_2a2(t) ( ) )
and
dt 2_1 A A 2.3
(&) =2 (+a5) @3

For massive particles we may take A=1. +* is an integration constant related to the energy, cf.

Ref. 1 and (2.9).
Next, we calculate the trajectory that passes through two given points (xg,%), (x,z) of
space-time. By T, (for notation in this chapter concerning transformations we refer to the

Appendix) we map x; into the origin, and apply the one-dimensional flow. Then we have
|"(t1;t0,V2) | = I Txoxl I; (24)

which determines v as a function of | T,oxl| and #, t;. The relativistic flow is, in general, not
transitive; it may be that for given initial and end points (x4%), (X;,4;) Eq. (2.4) has no
solution, v > 0. That depends, of course, on the expansion factor.

Finally, we apply the inverse T’ ~x and get for the trajectory

T X4
x(t,XOvtO:xlstl) - -xo( | T l r(t tO)Vz)) (2-5)
The time derivative of (2.5) is clearly
T, x T, x
Xg 1 xg 1
x=T"' r F 2.6)
x"(lT Xq| ) | Tx1| (

We want to evaluate this at x=x,, t=t¢,. The derivative 7 we eliminate by (2.1) and for
r(t,t,v,) we use (2.4). Then we apply (A26)-(A28), and arrive at

2.7)

. c 1 ( IXIZ) TxXo
X=— —

2a(t) J14+Av~%c%a*(¢) | TaXo| *
We define x*=(z,x), x=(x’), and the contravariant four-momentum p*=mc dx"/dt
=(E/c* ,p), p= (p '); furthermore, the metric Yij =4a%(t)(1— |x| 2/R?) _26 of three-space, the

norm |x| H—'y,,xxf the three-velocity vP—dx/dt With (2.1) and (2.3) we thus have (A=1
from now on)

(4

|vp|g= N (2.8)

and
E2=m**+m**a2(1), (2.9)

and
a*|p|4y=m*c"’. (2.10)
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We denote by an overtilde covariant three-vectors, e.g., i’=xiyij, ’§=piyij. Thus (2.7) may be
written as

P(x,X0v) = —2mc*v(1— |x|%/R?) N (Txxo/ | TxXo| ) (2.11)

indicating the covariant three-momentum of a particle at x starting at x,, with the energy
determined by (2.9). Most important for the following is to note that (2.7) and (2.11) hold
true if x, is a boundary point on S; Then we write xy=%, || =R. In (2.11) we have
| T,n| =R. For T,n we note the following identities:

Tim  R?3log P(x,) ( 1x|2) (2.12)

L e TR R S L

all easily derivable from the formulas given in the Appendix.
The flow from which (3.7) and (3.11) for xy=1, a boundary point, is derived, reads as

Ty
X(t;ﬂ,’Vz,Xl,tl) =T——xl T I‘(tl;t,vz) ’ (213)

representing trajectories starting somewhere on the geodesic arc through 7 and x, and passing
through (x;,¢;). The inverse of (2.13) is obtained by interchanging (x,,?;) and (x,t).
We have the Hamilton—Jacobi equation,

as
gp.p,= —mic, Pu=3 (2.14)

with the g** of the RW-line element (1.2). Its complete integral is

t
S(x,5;X0,) =8o(X;Xq,v) —mc? T+cHa (1) dt, (2.15)
const
with
B , 14+ R Ty x|
So=mc*vd(x,xg) =mc“vR log T—R- |T,0x| , (2.16)
d( , ) being the hyperbolic distance function of (A8).
We have
- 980 (x;x0,v) as
B(xxoy) =——3——, po=—E=—_, @I

and inserting that in (2.10) we obtain the differential equation for the reduced action S, If one
takes for E the negative root in (2.9), one also has to change the minus sign in (2.17). To verify
that S is really the general solution of (2.14), we note that via (2.3) we have

S=—-mc2J.t ar g (2.18)

and then we use (2.4) and (2.1).
The horospherical boundary action S°: Eq. (2.11) can be extended by continuity to bound-

ary points xo=1, || =R,
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P(x;m,v) = —2mc*vR~(1—|x|¥/R?) "' T, (2.19)

with T, as in (2.12). However, that is not true for (2.16) and (2.17), for S, diverges at
Xo=", a boundary point. But if we use, instead of (2.16),

S5(x;m,v) = —mc*vR log P(x,7), (2.20)

P the Poisson kernel as in (A2) or (A9), then

t

S”(x,t;n,v) =Sg(x;11,v) —mc? \/1+0270“2(t)dt (2.21)
const
is still a solution of (2.14) with one integration constant less then S, because | 77| =R. Then we
have for p in (2.19),

asg(x;m,v)
BxmY) =————. (2.22)

We also note that S® can be obtained from S by the following limit procedure. Define
xo=7(1—¢€). Then we have

—R log P(x,m) =lim[d(x,xy) + R log(1— | xo|*/R?)/4]. (2.23)
€-0

The most remarkable fact on the boundary action is that its space part (2.20) contains the
Poisson kernel, as does the space part of the wave functions in (1.3).

Let us now discuss the geometric meaning of P(x,y). The family of hypersurfaces,
log P(x,m) +c=0, describes for 9 fixed, ¢ real and fixed, a horosphere (a sphere on the horizon
of B*t!), namely a hypersphere in B! that is tangent to S, (the sphere at infinity of
hyperbolic space) at 5. For ¢c=0 the hypersphere goes through the origin of B%*!, its diameter
being R. For ¢— « it approximates .S, for c— — oo it shrinks to the point 7. The geodesics of
the horospherical flow (2.13) issuing from 7 lie on circles orthogonal to S, and also constitute
the orthogonals to the horospheres Sb(x,t;n,v) =const. Note that all geodesics issuing from one
and the same boundary point are parallel in hyperbolic space.’

We calculate the speed vg by which the surfaces of constant action move along their
orthogonals. We have vg:=p(p - dx/dt), p:= — (dP/dx) | OP/3x | ~1 the Fuclidean unit vector
orthogonal to the horosphere S°(x,t;5,v) =const. at x, pointing to the outside. Finally, vy is
calculated by putting the differential of S® equal to zero,%’

|vS|H=c,/1+c‘7v‘Zai(t). (2.24)

With (2.8) we have |vg| g |vp| p=C>

lil. THE INVARIANT MEASURE FOR THE HOROSPHERICAL FLOW, AND A COVARIANT
CONTINUITY EQUATION FOR THE CLASSICAL DENSITY

The horospherical flow in (2.13) leaves the measure
dH(x,m):=P*(x,m)dy ga+1(x) (3.1)

in B**! invariant; 9 is kept fixed as in (2.13) and dype+1(x) is the volume element of (A8).
To see this we use the axial symmetry of the H?*! model. Applying (A10)-(A12), we have

dH(x,m) »dH(y,tE):=P*(y,t;£) (1+ |€|*/R?*)dyga+1, (3.2)
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with dyga+1(x) the volume element of (A1). Because of the spherical symmetry of B! we
may choose for 9 w.l.o.g. (0,R), which projects onto £= 0, and we get

dH(y,t; 00 ) =(t/R)%dyga+1 . (3.3)

If £ is a finite point on the boundary of H%*!, the horospheres emanating from 7 are
mapped onto horospheres of &, Euclidean hyperspheres in the half-space, tangent at § to the
boundary plane. If §= oo, the corresponding horospheres are just hyperplanes parallel to the
boundary plane, and the geodesics issuing from §= oo are just all the Euclidean straight lines
perpendicular to them.

The reduced Lagrangian in H°*! (we write 7 here for time),

2

dr\? dt
qu,:cz(;,;) —az(T)th‘-z(a—s) =1, (34)

gives us just the horospherical flow,

y=yp, =t exp (3.5)

—c (7 1 dr
R L a(r) 14+v=2%c=%*(r) |’

issuing from §= 0, and passing through (y;;,7;). This corresponds just to (2.13) with
7= (0,R). Clearly this flow leaves (3.3) invariant, which also proves the invariance of (3.1)
under (2.13).

Next we show a transformation property of P(x,n) with respect to (2.13). We write here
for the moment y: = rR‘lT,]'q. Then we have

147/R

—r/R’
(3.6)

Pxm) =T =|T7_, (T T | =Ty (Txm) | | Tan| =P(xim) 77

where we have used (A29) and (A30). From the invariance of (3.1) and from (3.6) the
transformation of the hyperbolic volume element under (2.13) follows:

1—r/R\?
dde+l(x)=(1+r/R) dygd+1(xy). (3.7)

The meaning of (3.7) becomes clear in the H**t! model, using the flow (3.5):

dyga+1(y,t) =exp dya+1(yy,ty). (3.8)

dc J‘f 1 dr
R n @(7) J14v~%c2a(7)

We see that the horospherical flow is exponentially expanding in the d directions perpen-
dicular to the geodesics issuing from £= . Likewise in (3.7) it expands perpendicular to the
flow lines, isotropically on every horosphere.

To derive a covariant continuity equation for a classical density p(x,t) evolving according
to the horospherical flow, we apply (2.13) to p(x,?), and differentiate,

dp ap

at x(2)=0. (3.9)

With the definitions following Eq. (2.7), and with (2.17), (2.22), and (2.3), we have
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ds 1 98 4 dt a4s® 1 110
HO=gme 5 ™ == me (3.10)
Inserting that into (3.9), we finally arrive at
380 (3.11)
g Axt ax¥ )

with g,, as in (1.2). Equation (3.11) can be written as a continuity equation. Namely, from
A Bd+1Pd(x,n) = 0, cf. (A3), we easily derive the identity

1 .aPa aP
57 3 mg= P divigyn | Py } (3.12)

P

div 4, 1) denotes the divergence with respect to the metric ;; of the spacelike slices (d=2).
Using (2.20), (2.17), (2.9), and (2.8), we write (3.11) as

aPp i L Y-
a‘3—at—+d1v(d+l)[a‘3PdJ]=O, ]:=E}’Ua_xj’p=Vpp- (3.13)

With d=2 and the four-current j“:=(a‘3P2p,a”3P2j) we may express (3.13) as a four-
divergence,

1 4
7_—g5-x7(',_gﬂ)=0’ (3.14)
and we have the conservation law

deH pP2 dypi+1=const , (3.15)

which also follows directly from the invariance of (3.1) under the horospherical flow.

IV. THE ASYMPTOTIC EQUIVALENCE OF THE QUANTUM MECHANICAL FLOW AND
THE CLASSICAL HOROSPHERICAL FLOW IN THE FINAL STAGE OF THE
COSMIC EXPANSION

We start with a Gaussian wave packet,

_ (s—so)2

P(y,;6)
Tl, (4.1)

Y(y,t;7,6)= T— f:m ds p(7,s)exp[ —is log P(y,5;§) Jexp

and a solution ¢=A4(7,s)exp[—if(7,s)] of (1.4) and (1.5). It is assumed here that we are in
a regime where we can disentangle positive- and negative-frequency solutions; see the examples
in Sec. V. We use the H* model and write in this section again 7 for time. These wave packets
are not yet square integrable, having constant density on the horospheres (cf. Sec. III). A
further averaging over the degeneration index § as in (1.7) will effect exponential decay along
the horospheres toward the boundary of H>; we shall comment on this at the end of this
section.

We may put w.lo.g. £= o (cf. Sec. III), then we have P=¢/R [cf. (A18)]. We evaluate
the integral in (4.1) by steepest descent,
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PA(t,5) , a? (log P+ £,5)?
\P~m exp —Ii(sglog P+ f )exp 7 T1tia Tk (4.2)
the derivatives of f being taken at s,. With (1.6) and (1.5) we obtain
a 3P ex o? (log P+f,s)2 (4.3)
P ;}1+a4f,ss P 1+a4 55 ’ '

the overall sign of p we take for convenience positive. The continuity equation and the three-
current density corresponding to (1.6) are given by

%P im0, o6 L w vl 44
T TV I=0 S| Y YY) “4
and with (4.2) and Yij as after (2.7) we have
) af\~! )
~— —_— S ey
7 c2( af) sopy" 57108 P. (4.5)
We eliminate the 7 derivative via the determinant condition (1.5),
a
Az—f= xa 3(7), (4.6)

ar

with opposite signs for positive and negative frequencies.

We want to compare the current density (4.5) and the density (4.3) with the correspond-
ing classical quantities. We switch to the B> model, take for the classical initial distribution in
(3.11) and (3.13),

po(x,m) =exp[ —a’ log? P(x,1) ], (4.7)
and apply the flow (2.13) to it. Using (3.6) we have

2(10g P c J‘f 1 dr 2
_a(og (x,"])+R o 300 \/1+/1c‘2v"2a2(1'))

Analogously in the H*> model, using £= oo and the flow (3.5), we may replace P(x,n) by
t/R in (4.7) and (4.8). Next we average the density and the current in Eq. (3.13) over the
energy variable v, by steepest descent,

. (4.8)

p(x,;m,v) =exp

1 f+ood ( ) —(v—v(,)2
Pc(X,T,"l)—W _ Gvelxmmy)expl g
1 —a?(log P+ A4)? 49
~\/1+252a232 exp 1+2B2a232 J, ( . )
with
- f " () (1 Avg T () 2 dr (4.10)

70
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and
A T —2..2 2 32
B=—— f a(t)(14+Avg “c %a*(7)) "> dr. (4.11)
C‘VOR 0

For the averaged current density we get

. —c*Rv, dlog P
Je~ P! —
o Jl4cMviaTi () T ox

(4.12)

In a period of slow variation of a(z), a'™ (¢)/a(t) ~0 (also see Example 1 in Sec. V, final
stage of the expansion), the Green—Liouville solution® of (1.4) aud (1.5) is

@) ~A~V2a= (1)(P+p* ()~ exp—if (1), (4.13)
with
f(t)=Ajt dta=(t) +u*(t), wp(t):=Rmchi'a(z). (4.14)
o
If we identify |
fis 1 i "
"=meR’ P=AmeR’ (415)

we have f =4, f = B#i(mc®R) ™!, A, B as in (4.10) and (4.11). So we obtain identity of the
averaged classical four-vector j':= (a‘3P2pc,a‘3szc) composed of (4.9) and (4.12) [cf.
(3.14)], with the quantum mechanical current, #:=(p,j), composed of (4.3) and (4.5) [cf.
(4.4)]. At this point it may be appropriate to say something about positive-/negative-frequency
solutions. Clearly, in the case of adiabatic variation of the scale factor a change of the sign of
S would amount to a wave packet (4.2) traveling backward in time, corresponding to a
classical time inversion, namely to a change of the sign of the root in (4.8). In a period in which
annihilation/production processes occur, one cannot disentangle positive-/negative-frequency
solutions, in fact, such concepts then even do not exist, and one cannot hope to access these
regimgs; classically, but one can still strike the balance between two periods of adiabatic vari-
ation.”

The group velocity v,, is the velocity by which the horospheres carrying the highest density
(4.3), H:=log P(x,m) + f ;=0, move along their orthogonals, namely the classical trajectories
issuing from % (cf. Sec. III). Let p be as in (2.24) the Euclidean unit vector, orthogonal to the
horosphere H=0 at x, pointing to the outside of the sphere. We have®

_ |0log P!
vgr=pf,st T ’ (4.16)
and
|Ver| 4=Ra(2) | f.q|- (4.17)

The phase velocity is calculated by putting the differential of S =s, log P+ f equal to zero, we
obtain

|Von| s=Ra(t)s5 | f]- (4.18)
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In the case of slow variation of a(z) and with the f in (4.14) we get | Vg |5 |Vpnl a=c%
With the identification (4.15) we have vy, =Vp, ¥, =Vg, With vpasin (2.8) and vgas in (2.24).
Thus we may write the current density in (4.5) as j=v,p.

To make the wave packets (4.1) square integrable, a further averaging over the § variable
is needed. We want to point out the exponential decay of the averaged packets. A § averaging
of (4.2), or likewise of (4.9) in the H?*! model, amounts to calculating integrals of the
following structure:

(§—&0)°
—ATog (1 —yI™+) — Blog(|E—y|*+) 2,

1
Iy =G fnd d§ exp
(4.19)

with 4, B some constants. This can be done by steepest descent, which means in leading order
to replace in P(y,t;,£)& by & in (4.2) or (4.9). This expansion is not uniform, assuming that
( |§0~—y|2+ )~y is small, and therefore we cannot use it to study the decay of I(y,t) in the
region y ~ &, t~0, where the horospherical flow emerges.

We now estimate the behavior of I(y,t) for (y,t) approaching (£,,0) along a horosphere
log P(y,t;§5) +¢=0; cf. Sec. III. We solve this equation in lowest order of #, y(t)=§,
+e“%2u, u some unit vector in R? and consider I (y(5),?).

Defining ¥=y(1) — &, T2=£+§>, A=AlogT*+ B, and a small ball B(0,5), we get as-
ymptotically

I(y(2),f) ~const., f dE(|&|2+72)~*~const, T4~ ~92, (4.20)
B(0,8)

with const., independent of é. _
Denoting the §-averaged ¥ in (4.2) by ¥, we obtain (for notational convenience we put

f=0)
W(y(1),)¥(y(2),)~const “[log*(e~%)]~¥2 exp(—a’c?). (4.21)

The constant is independent of ¢. Without & averaging this density would have been indepen-
dent of ¢, being constant on a given horosphere. Clearly Eq. (4.21) means exponential decay in
the hyperbolic metric, for #~const exp[—d(y(2),5;¥0.%0)], (Yor?p) some point in H**! and
d( ; ) the hyperbolic distance function. We emphasize that this exponential decay does not
stem from interference, the averaged classical density (4.9) decays likewise exponentially. The
square integrability of these wave packets also follows easily from the integral representation in
(1.7) and the orthogonality relations in the Appendix.

V. DISPERSION: THE CLASSICAL AND QUANTUM ENERGY-TIME UNCERTAINTY
RELATIONS, AND THEIR TIME EVOLUTION IN RW COSMOLOGIES

We discuss at first the quantum expectation value E and the dispersion (AE)? for slowly
varying expansion factors. Using (1.8) and (4.13), we obtain

e(s,t) =fiAa~ 1 (2) [ P+ pl+ O (¢%/di/a)]. (5.1)

Denoting averages with respect to 7~ /2o~ exp[— (s—s0)%/a*] by ( ), we have (AE)%
=(€?) —E?, E:=(¢). The following integrals are asymptotically calculated by steepest descent.
We have

E=#iAa~'(t) [ R+12+E (a¥/s3)], (5.2)
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later we will assume that « is a function of sy, and the & term is then meant in the limit sy— .
Furthermore,

AE Z—ﬁzAz @ % o o 53
( )“Z’GT[TWJ“ (;%'), (5.3)

Egs. (5.2) and (5.3) hold true at a fixed time. The time behavior of E and (AE)? for a(t) » o,
keeping s, fixed, is just E=mc*+ & (1/a*(t)), and

AE)*= # 20%5% o! o ! 5.4
(AE) “4a‘(t)R‘m7[ *Sot+gt (E’?H)l 54)

Next we calculate the expectation and the uncertainty of the coordinates by means of
(4.3). Because p is constant on the horospheres, we calculate (x), (Ax)? in the direction
orthogonal to them. Moreover, we use the H®> model and put w.lo.g. £= e, so that the
horospheres are planes parallel to the boundary of H°.

The probability measure on the ¢ coordinate is thus (we write in this section x for the ¢
coordinate and ¢ for time)

1 dx (log x/R+ f5)?
du(x)~72—ﬂo—7?exp Sy~ a— (5.5)
with
1/2a*=a?(1+a*f%). (5.6)
We have
w a*
(x>~f0 x du(x) =exp T_f,s’ (5.7)
and
© at
(Ax)2~f dz(x,<x))du(x)~(&2+—4-)R2a2(t), (5.8)
0

with d(x,xp) =a(t)R|log(x/xy) |, the three-distance of two points, (y,x), (y,xo), lying on the
same vertical.
From (5.6) and (4.14) we have
(Ax)*=a*()R}[1/20*+ O (a*/s) ], (5.9)

and from (5.3), (5.9), and (4.17),

#? 1 ot
2a 2 o2
(AE)X(Ax) -4|v8,|,,+ﬁ(;g,;g). (5.10)

If we divide by Ivgr|%1, At=Ax/|Vg |z we obtain the energy-time uncertainty relation.
Next, we study the behavior of (AE)*(Ax)? for £— co. In Ref. 2 it has been shown that an
expansion factor of the form

a(t)=At+c(log At)*+ & terms, (5.11)
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with 0 <A<1, ¢>0, or 4 <0, ¢ <0 or ¢=0, leads to a positive pressure and energy density.
In Ref. 2 we calculated as a solution of (1.4) and (1.5) with the a(¢) in (5.11),

mc? - 2 5 mcit G+5))A
¢=D 7 (AD) (140 (%)) exp —i % T men |’
D=1+powers of (log* At)/At. (5.12)
Inserting that in (1.8), we have
e(s,t)—mczD2+—Z;-lz ( +s2—18§) +073). (5.13)

In order to obtain (5.13), one also needs the & (1/#2) terms in (5.12). On the other hand,
because of the subtraction in (AE)? it is enough to know €(s,?) in the order given to calculate

(AE)*= # a—4+2a2s2 +& 1), (5.14)
am’c*A\ 2 0 £ :

(€) is given by (5.13) with s replaced by s<2)+ /2.
The phase in (5.12) is now f=mc*/fi— (s*+3)#/(2mc*t) + £ (+~2), and with (5.6) and
(5.8) one obtains easily

(Ax)2=R*(At)*[1/2a*+ 1/16a*+ O (t2)]. (5.15)
For the group velocity we have
| Ver| i=RAfis/ (mc*t), (5.16)

and thus

1 1
(AE) (Ax)2~—|vg[H(1+—zsz+—sz+ ) a’(?). (5.17)

The right-hand side is minimized if one chooses a?=5,/v2. For sy— co one then approaches
the smallest possible value.

Instead of (5.12) and (5.13), we could have used (4.14) and (5.6) in (5.8) to obtain
(Ax)?, and likewise (5.4) for (AE)?% because a(t) is slowly varying, a'™ (¢)/a(t) -0 suffi-
ciently fast, that (4.13) is a good approximation to the solution of (1.4).

We now discuss the classical analogs to the quantum mechanical uncertainty relations.
Using (2.17) and the averaging as in (4.9) we get

—(v— Vo)

J- dvl+ _ (t) exp | (5.18)

Scaling the integration variable, v— #is/ (mc*R), and introducing B=v2Bmc*R/#, we have
E.(B)=E(a=p), with E(a) asin (1.9) [e(s,?) as in (5.1) but without the ¢ term]. Formulas
(5.2)-(5.4) hold true with E replaced by E,, a replaced by B and sy=vymc’R/#. In particular,
we have, instead of (5.3),
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(BC)Z (C’Vo)2 Bz
2_ 2.4
(BB =2t ™ Tovr+ @ 7 (;g) (5.19)
and instead of (5.4),
(Be)? (Bc)? 1
(AEC)2=;;(—t-)-mzc4l(VoC)2+ 5 ](1+e7(a7)). (5.20)

The coordinate averaging has to be carried out by means of p, in (4.9), namely by the
measure

1 dx (log x/R+A)?
du.(x) =75';E';CXP > a— (5.21)
with
1/26*=a*(1+2a%8*B*) "1, (5.22)

and 4, B defined in (4.10) and (4.11).
The classical coordinate expectation value reads (x) .=exp(&/2—A4), and the dispersion

(Ax)2=R%*(1) (&*+a%/4). (5.23)

From B in (4.11) we have for large v, and ¢ fixed (or at least in a finite interval, well away
from 0 and ) B~const.v,~>, and therefore in this limit

(Ax)2=d*(t)R¥(1/2a*+ & (B/V5)). (5.24)

With (2.8), (5.19), and {5.24), we have

(BEmRY|vply (B B
2 2_
(AE,) (M)c——mh+ﬁ(;g, (ave) ) (5.25)

In the classical description there is clearly no lower bound for the product (AE,) (Ax),,
since the widths of the Gaussians in (5.18) and (5.21) may be chosen independently. If we
connect v,s and B, as in (4.15) we get the identity of (5.25) with (5.10), because we also have
|Ver| 5= | Vp| g3 see after (4.18).

Finally, we discuss (AE,)*(Ax) 2 in the limit of large ¢, with a(¢) as in (5.11). Because
B~const £ in (5.22) we have the same expression for (Ax) 2 as in (5.15), and (AE,)? as in
(5.20), and therefore

(B*mR)?|vp| 5 1 g g 1
2 2_
(AE,) (AX)C——-——-ZE{—— (1+W+2—vg+l—6wo)+(7(?), (5.26)
which is via (4.15) identical with (5.17). Note that in the static case with a(z) =1 we would
have (AE,)%(Ax) 2~ (AE)%(Ax)?~const ¢, instead of (5.26) and (5.17). The expansion of
space acts stabilizing in the final stage.

In our second example we treat the time asymptotics of (AE)?(Ax)? toward the initial

singularity, using the expansion factor (cf. Example 7 in Ref. 2)

a(t)~(ADY, A>1, t-0. (5.27)
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Here a(t) is obviously not slowly varying, ™ (¢)/a(t) - co. From Ref. 2 we know, assuming
at first £4, that

P~A"2 (P4 1—-68)"V4H(AD) T exp[ —i P+ 1—6E(AD "M/ (A—1)]  (5.28)

is a positive frequency solution of (1.4) and (1.5), and so we obtain from (1.8)

€(s,2) ~AiA P+ 1—6E (A1) . (5.29)

Using the same Gaussian as in (5.2) we obtain

E~ﬁA(At)“[ \/E%TEEJFZ(:%%ﬁm(%) (5.30)

and
(AE)2~#A2(AI)‘“[E—G§—_:ﬁ—6€)+ﬁ(§£) . (5.31)

From the phase of (5.28), we have
|Vee| h=R2A’/ (5+1—66), (5.32)
and from (5.6) and (5.8) we get

Ax~¥ fa). (5.33)

Thus
(AE)Z(Ax)2~-ﬁg | Vg | 2f %~ const(Ar)*(1 -8, | (5.34)

whereas for bounded ¢ and sp— « we again have formula (5.10).
The classical situation is at first sight very different. For the B in (5.22) we obtain

A/lt/l+1

B~R(l—6§)vg(/l+1)’

(5.35)

and therefore formulas (5.25) and (5.26) remain true: the quantum evolution (5.34) is very
much different from that of (5.26). However, (5.26) corresponds to the conformally coupled
case £=¢. The phase in (5.28) is then to be replaced by

s (mN b
f=7—7(A) —(M)(At)+2(/1+1)s, (5.36)

higher orders in ¢ are to be taken into account.” Then we have via (4.15) the relation
B#i/(mc*R) ~ f o Because f -0, we obtain

(AE,)Y(Ax):~ (AE)*(Ax)*~const t~%, (5.37)
Equations (5.34) and (5.37) indicate impressively the instability of classical trajectories and

quantum fields at the beginning of the expansion. The remaining examples 2—6 in Ref. 2 can be
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discussed on completely equal footing; however, there are several special cases to consider, and
that will be communicated elsewhere.

V1. CONCLUSION AND OUTLOOK

We are continuing our work on the dynamics of fundamental particles in open and ex-
panding RW cosmologies of negative spatial curvature. In these cosmologies there do exist
common features between the deterministic but unstable classical mechanics and its quantized
counterpart,® which are usually not encountered in other dynamical systems.

Due to the instability of the world lines one needs, even in the classical description,
probability densities. Expanding bundles of geodesic flow lines act on them and generate
dispersion. These bundles constitute just the orthogonal trajectories for the wave fronts of the
horospherical waves, emanating from a point at infinity of hyperbolic space, and these waves
constitute, in turn, a complete set of eigenfunctions for the Klein-Gordon equation. Therefore
we could show (Sec. V) the equivalence of the classical and quantum dispersion of the energy
and the coordinates in the asymptotically flat region, in periods of adiabatic expansion, and also
in special cases at the beginning of the cosmic expansion.

Let us now shortly point out how the foregoing can be generalized to RW cosmologies with
open hyperbolic manifolds as spacelike sections. We break at this point with self-containedness,
a certain familiarity with Refs. 1, 3, and 9 is useful for the understanding of the following
suggestions. At first some comments on these cosmologies. They are determined by the choice
of the expansion factor, the topology of three-space, and the metric of three-space, which may
itself be time dependent, since a hyperbolic three-manifold if it is open and multiply connected
can carry many nonisometric metrics of constant curvature — 1/R? In fact, the space of these
metrics can be parametrized by a certain number n of real parameters, varying in a finite
domain of R" (deformation space), n depending on the topology. During the cosmic evolution
the metric of three-space is determined by a time-dependent path in the deformation space.>’

Let us, at first, discuss the choice of the expansion factor. If we discard periodic universes
and de Sitter space, Einstein’s equations and negative curvature require essentially linear
behavior of the expansion factor in the final stage of the expansion. In the intermediate stage
one cannot say much about it; there may be periods of rapid variation and even oscillation
alternating with phases of slow expansion, and cosmological considerations should not depend
on the knowledge of @(#) in this region. Finally, in the early stage we can make guesses about
the asymptotic decay of a(¢); for example, if we assume power law behavior, a(t) ~*, we get
qualitatively different behavior of the classical and quantum dynamics in only four A intervals,?
namely, (0,3), (3:3), (31), and (1, ).

Next, we make some comments on the topology of three-space. Homogeneity and isotropy
require constant curvature, but let the topology be open. It seems to be rather unjustified to
appeal to the three-sphere for reasons of simplicity, and to the closure of three-space because
of Mach’s principle, which, attractive as it may be, has never been able to leave the realm of
philosophy.

Which three-manifolds of constant curvature come in question as possible candidates for
three-space? Three-manifolds of positive and zero curvature are very exceptional.!® Then, there
are the hyperbolic manifolds of finite volume, typical examples for them are the platonic solids
with face identification, and they are also rather artificial. Thus we are left over with the open
hyperbolic manifolds. Their classification is not yet completed, however, there seem to emerge,
apart from an enormous amount of more or less pathological counter examples, two generic
classes: the massive handlebodies, topologically the product of a finite interval and a disk with
some smaller discs removed, and the thickened surfaces, products of a finite interval and a
Riemann surface. Now, what is the connectivity of three-space, and in the second case what is
the genus of its fibers? In my opinion there are only two cases to distinguish, either it is high,
or it is low, only that will make a qualitative difference concerning the dynamics. With respect
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to the possible choices of the metric of three-space, which is, as mentioned, not uniquely
determined by the topology, my answer is similar. Either the metric is well in the interior of the
deformation space, or close to the boundary, only that will make a qualitative difference, and,
of course, the time variation of the deformation path.

Finally it is rather straightforward to generalize the results of this paper to these cosmol-
ogies. The wave equation has already been discussed in this context,' namely on fundamental
polyhedra in the Poincaré ball representing the hyperbolic manifold. Analogously, the classical
evolution equations (3.11) and (3.14) are adaptable by periodization with respect to the
discrete group I', generated by the face-identifying Mdbius transformations of the fundamental
polyhedron. Horospheres can be projected like geodesics into the manifold, for they have
constant curvature.* There are two cases to distinguish horospheres that emanate from the
limit set A(I") of T and horospheres that emanate from its complement. The second case is
similar to that treated in this paper, the projections remain closed, in general self-intersecting
surfaces tangent at some point to the boundary at infinity of the three-manifold. In the first
case, however, these projections constitute the surfaces of constant action of the chaotic tra-
jectories, as well as the wave fronts of the chaotic wave fields, and their topology can get quite
intricaltle. This and the topological scattering effects that arise are discussed in a subsequent
paper.
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APPENDIX: THE ORTHOGONALITY AND COMPLETENESS RELATIONS FOR THE
LAPLACE OPERATOR IN H?+! AND B?+', AND THE INVARIANCE GROUP OF
HYPERBOLIC SPACE

In this appendix we collect some basic formulas of hyperbolic spectral geometry and sketch
the action of the Lorentz group in hyperbolic space, represented as Mobius transformations in
the Poincaré ball. To perform calculations in hyperbolic space it is very useful, in fact indis-
pensable, to switch quickly from the ball model to the half-space model and vice versa, ex-
ploiting the spherical symmetry of B°*! and the cylindrical of H%*! in problems, where there
is a special direction distinguished, e.g., by choosing a special point on the boundary. We also
let the dimension d+1, d> 1 of hyperbolic space open.

1. The H?*+! model

H?*+1is the half-space R®XR™, parametrized by (y,?), yeR?, R, and endowed with the
metric

ds?=R*2(dP+dy?), (A1)

and sectional curvature —1/R% The volume element we denote by dyga+1 and the Laplace-
Beltrami operator by Aza+1. The generalized eigenfunctions are powers of the Poisson kernel,

Rt
P(Yst3§) =m2+7 ’ §€Rd9 (AZ)
satisfying!>!3
— A+ 1P(y,5:6) =R~ 2a(d—a) P*(y,5€), (A3)
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a may be any complex number. We define the spectral variable A=a(d—a), a=d/2—is, seR,
the absolutely continuous spectrum lies in [d%/4,]. The £ in (A2) is a degeneration index,
also +s<»A. There are no bound states. We have the following orthogonality relation:

, . £\€
lim LM P2=E1(y, 1,6 P72y, 1)) (I_e) dyp+1

-0

F(IS ) 2R2d+l
=27Td+lT|i'\—(d/1/_2|__’_Tsl-Wa(§l—€2)6(sl—sz). (A4)

In the case d=2 the right-hand side is thus 27°Rs; 26(&; —&;)8(s,—s;). The integral in
(A4) is standard;'® for in the H?*! model the Poisson kernel takes the form of a Feynman
propagator. The completeness relation reads as

lim d+1 doga+1(£,s)e S| PY25(y 1, 8) P25y, 0038) =8 pa+ 1 (Y1, t5¥ 2 t)  (AS)
e-0 /R

with the spectral measure

1 |T(d/2+is) |2
dUHdH(g,S) _41Td+1R2d+1 IF(IS) |2 dé‘ds (A6)

A possible representation of the H%*!—§ function is

1= , 7
H . o7Td/2+le+I (62 ' 4[)5/2+1

with the point pair invariant L(y,t;;y,,%,) defined in (A16). The validity of (A7) can readily
be seen by integrating it against a test function, using the symmetry (A17). The integral in
(AS5) is again a Feynman convolution with respect to §.

2. The B9+ model

B?*1is the ball |x| <R, xeR“*!, endowed with the metric

I AS
== xR’ (A8)

the volume element dy ga+1, and the Laplacian A ga+1. The Poisson kernel now reads'? as

p , 1—|x|*/R?
(x,7)=R Tx=qT NS4, (A9)

S, is the boundary sphere of B**!. Equation (A3) holds true with the obvious replacements.
The isometry H** <> B*t! may be realized as®

1 y: 72

with the inverse

R 2x1 X° Xz
(XXa1) = R (12 /RE\R L RTRE )
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Note that (0,R)eH*t! is mapped into the center of B! and the point at infinity on the
boundary of H%*! is mapped into (0,R)eS,. By this transformation the boundary sphere S, of
B?*! is stereographically projected onto the hyperplane R at infinity of H%*!, and the spher-
ical volume element on S, projects as

dg
d
dﬂsd—»z L E[VRD (A11)
onto R% With (A10), we have
P(x,m)=P(y,5£) (1+|&|*/R?), (A12)

where the boundary points 7S, £€R? also correspond via (A10).
The orthogonality relation in B**! reads as

pir—is pr+is 41 | T (isy) | 2R?%+!
deH 1(x,m) 2(x,7,)dy pa+1=(27) [T (d/2+55,) ] 85, (M,m2)8(s1—5,),

(A13)

where 85 is the & function on S;. As a regularization of the integral one may take the factor
exp —eL(x,Xy), L as in (A16), x,eB**". The B**!-completeness relation reads as

f do ga+1(0,5) P72 5(x0,m) P72 5(%5,m) = 8 pas1(X1,X,), (A14)
SdXR

with the spectral measure

1 |T(d/2+is) |2
daBd+1(ﬂ,s)=2(2")d+IR2d+I T dQg, ds. (A15)

The same regularization for the integral as in (A5) may be used. The volume element of the
d sphere is not normalized. 6 ga+1 is the & function of B?+!. Equation (A7) holds true, with
Spa+1 replaced by Spe+1, and L in (A7) is the following point-pair invariant of hyperbolic
space:

L(xyx,):= 1 |x—x,|? ly1—y212+ (5, —1,)?
LR R (1= x| ¥/RH (1= | x| ¥/RY) — 411,

=:L(ypt;¥ta),
(Al6)

and x;<>(y,1;), X3>(¥5,1;) correspond via (A10). L is invariant with respect to the invariance
group of hyperbolic space, the group of Mdbius transformations (y) acting on B*+! or H¥*!,
respectively [see (A21)-(A30)}:

L(yxy,7%;) = L(x1,X,), (A17)
and analogously in H**!,
The boundary of H**! is just R?7U{ 0 } =S, By (A12) the Poisson kernel at £= o may
be chosen as

P(t)=t/R. (A18)

We have orthogonality,
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f " P51 P () R4 de=218(5—50), (A19)
0
and completeness,
. . . £\ 9+1
f Pd/z‘““(t)Pd/”"(to)ds=21r(1—z) R&(t—1o), (A20)

on the ¢ coordinate, i.e., in L2([0, ], =9 1dp).

To treat the horospherical flow in Sec. II we need some formulas for M6bius transforma-
tions.!> Here using the ball model and its spherical symmetry is almost compulsory. For
x,ye B*t!, x=(x'), we define

2y x'x/
x*:=m;, Q,j(x):=5,j—2m2 (A21)

and

[xy]:= {1+ |x|?|y|/R*—2xy/R* =R~ %|x| |y—x*| =R 2|y| |x—y*|. (A22)

There is a M6bius transformation, T'y( - ), acting in B?*!that maps y into the center 0 and
leaves the straight line through y and 0 fixed. This transformation is unique up to a rotation
around this straight line, and it can be realized as

(1—|y|*R*) (x—y) — |x—y|%y/R?
[x,y]? '

x-Tyx= (A23)

This action extends to .S, For d=2, using the stereographic projection (A10), Tyx is just a
Mobius transformation acting on the complex plane. The general form of a Mdbius transfor-
mation in B*t! is (A23) followed by a rotation around the center 0. For the absolute value of
(A23), we have

|x—y|*> L(xy)

2_ —
T =y =T Ly (A24)
with L as in (A16). Thus
| T x| = Tyxl, (A25)
for every Mobius transformation 7 in B*!,
Let T;,x be the Jacobi matrix of (A23); then
. 1—|y|¥/R?
Tyx=_[x_y]2_ 0(y)Q(x—y*), (A26)

with * and Q defined in (A21).
The conformal change of scale |T;x| (|T;x|?*! is the Jacobi determinant in B“*!,
| T;x|“ the Jacobi determinant of Ty acting on S;) reads as

., 1—|y|¥/R?
| Tyx| =—W . (A27)

For Q we have orthogonality and symmetry, Q~!=0Q’=Q, and Q(—x)=Q(x), and
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Q(y)Q(x—y*) =Q(x*—y)Q(x). (A28)
Analogously to (A25) we have, for every Mdébius transformation ¢,
| Tyyvx| |v'x| = |Tyx|, (A29)

with ¢’ the conformal change as in (A26).
We note that the following special values of T and T all easily follow from (A23) and

(A26), namely,

T,y=0, T)y=(1—|y|%/R*)~Yd, T,0=-y,

(A30)
T)0=(1—|y|*/R?id, Tox=x, Ty, 'x=T_yx.
Obviously the Poisson kernel (A9) can be expressed as
P(x,m)=|Tym|, (A31)

with |T/n| as in (A27). From (A29) we have the following transformation formulas for P:

P(yx,ym)=P(x,) |v'n|~" or P(yx)=P(x,y"'q) |y~ (A32)
Analogous formulas hold for the H**! model and P(y,;€) in (A2).
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