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Abstract. An elementary review of my work on the physical impact of the
topological structure of space-time is given. An account on classical chaos
in an open, multiply connected universe is presented. The uniformity of the
galactic background is related to the erratic behavior of the classical world
lines around the chaotic nucleus of the universe. On the quantum level we
discuss particle creation, backscattering, anisotropy in the microwave back-
ground, parity violation and how all this relates to the multiple connectivity
of the open spacelike slices.

1. INTRODUCTION

If one agrees to do cosmology on the basis of a space-time continuum, a Riemannian
four-manifold, one is soon confronted with the choice of the topology. What is the
global topological structure of space-time? This question was immediately raised by
the mathematician Felix Klein, when Einstein proposed his first cosmological model,
but it was not until much later, that the topological impact on geodesic motion gained
serious consideration [1, 2].

Is the universe finite or infinite? Most laymen, and I think also philosophers,
would attach to the word “Universe ” the attribute “infinite”. Many physicists however
believe that finite models of the universe are handier for heuristic reasoning. In fact, the
idea that the physical universe is infinite was rejected by Jordan on the grounds that
we will never be able to look at infinity and verify what is happening there [3]. What
he overlooks is that the global structure can manifest itself in (microscopic) physical
phenomena.
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We will see, cf. Sec. 3, that an infinite and multiply connected universe has a
chaotic center [4, 5], that may well account for the equidistribution of the galaxies.
Some kind of chaos is in my opinion necessary to achieve this, the actual problem here
is not only to explain the uniformity, but rather the apparent deviations from perfect
homogeneity.

The crucial question is not so much what is the topological structure of the uni-
verse, but rather how does it evolve. An infinite universe has indeed the ability to evolve
(6], contrary to closed ones, whose time evolution is confined to a trivial rescaling of
the length unit on the spacelike slices. In Sec. 5 we will discuss this evolution in terms
of global metrical deformations of the spacelike slices, global in the sense that the lo-
cal curvature stays constant. We show how simple coordinate transformations in the
covering space can generate such deformations, and how they distort the center of the
3-slices. In Sec. 6 we show how this evolution provides a dynamical mechanism for
particle creation [6, 7]. In Sec. 7 we demonstrate how such deformations generate an
angular dependence in the temperature of the microwave background [7, 8]. In Sec.
8 we sketch how the topology of the universe leads to the non-conservation of parity
[9], and to a possible explanation of the baryon asymmetry. Finally I mention here the
fascinating possibility of a multiple connectivity of space-time in the small [10], and of
particles emerging as topological excitations.

In Secs. 2 and 3 we give an introductory and more or less self-contained account
on the geodesic problem in open hyperbolic 3-manifolds [11-14]. In Sec. 4 we discuss
how this relates to chaos in RW-cosmologies[4, 5]. The quantum mechanical ground
state problem for chaotic wave fields localized on the center of the 3-slices [4, 15], the
dispersion phenomenon in RW-cosmologies, and horospherical flows [7,16] are reviewed

in [17].

2. SOME ELEMENTARY GEOMETRICAL AND TOPOLOGICAL CON-
CEPTS

In this Section we sketch some methods to study the global behavior of geodesics on
a 3-manifold in a quantitative way. With geodesic we mean here the shortest path
between two points compared to all neighboring paths. The emphasis lies here on
“neighboring”, because in a multiply connected space the geodesic variational problem
has several local minima, if the two points lie sufficiently far apart. With geodesics we
mean such local minima.

Global variational problems are in practice much harder to solve than local ones.
In the case of multiply connected manifolds, the universal covering space construction
provides a very efficient way to do that. The geodesics as we discuss here turn out to
be the spacelike projections of the world lines in the RW-cosmologies discussed in Sec.
4. Let us start with an example.

The simplest example of a multiply connected hyperbolic 3-manifold is a solid
torus, topologically the product of a finite interval and an annulus. It is best modeled
in the Poincaré half-space H3, its universal covering space: the complex plane with
a t-axis perpendicular to it, £ > 0 (¢ denotes always a space coordinate), and a line
element do? = t~%(|dz|® + dt?). In this way we get an isometric copy of the Minkowski
hyperboloid, i.e. hyperbolic space H3. The geodesics are either straight lines perpen-
dicular to the complex plane or semicircles orthogonal to it. The totally geodesic planes
are therefore either hemispheres on C or Euclidean half-planes perpendicular to C [12].
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To construct the torus we place two concentric hemispheres with radii » = 1 and
r = |a| > 1, a € C, onto the complex plane, see Fig. la, and identify them by the
transformation T4(2,t) = (az, |a|t). This T, leaves the metric on H?® invariant. If o is
positive the identification happens radially, if it is'complex we rotate the hemispheres
against each other before we identify them. The hyperbolic polyhedron F bounded by
the two hemispheres and the annulus between their base circles in the complex plane is
topologically a solid torus if we perform the above identification with T, see Figs. la,b.
The metric do? of H® gets induced onto F, and (F,T,) is thus a hyperbolic manifold.

Figure 1a. Section through the Poincaré half-space H3 .We place two concentric
hemispheres of radii 1 and |a| onto the complex plane. F is the polyhedron
bounded by these two hemispheres and the annulus between the base circles in
C. I we identify the two hemispheres radially (indicated by the map T,), then
(F,T) is topologically a solid torus, cf. Fig. 1b. The covering group T’ consists
of all integer powers T?. The images T?(F) provide a tiling of H3, as well as
of C, the boundary at infinity of H® , with concentric hemispherical shells and
annuli respectively. The tiles have two accumulation points in C, namely 0 and
0o. A(T') is the limit set of T.

Figure 1b. If the polyhedron F is bent in the indicated way, it is quite obvious
that (F,T') gives topologically a solid torus. Its boundary is the 2-torus obtained
by identifying the boundary circles of the annulus in the complex plane. The
hyperbolic metric gets singular at C. Therefore (F,T) is an open 3-manifold.
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One can now pose the question how many hyperbolic (i.e. of curvature —1) 3-
manifolds with the topology of an open solid torus (the product of a finite open interval
with an annulus) do exist. Sufficiently small coordinate patches on two hyperbolic
manifolds can always be mapped isometrically onto each other, because they have
the same curvature. Here however we must ask if there exists a global isometry, a
diffeomorphism of a solid torus onto another, that respects the metric. The answer is
that different a (in T,) correspond to different, globally non-isometric (non-isotopic)
solid tori.

In order that (F,T,) is a Riemannian manifold, the induced metric has to fit
smoothly on the identified hemispheres. There is a simple criterion for that. We define
T, the covering group, as the set of all integer powers of T,, . Then the images T?(F)
of the polyhedron F under I' must give a tiling of the covering space H3. This tiling
is depicted in Fig. la. The tiles have two accumulation points, 0 and oo, the limit set
A(T'). These accumulation points at infinity play an important part in analyzing the
global behavior of geodesics, as well as in the spectral analysis of wave equations on the
manifold [4, 8, 9].

By means of the covering group I' and the polyhedral tiling I'(F') of H® we can
project geodesics of the covering space H® into the 3-manifold (F,I'). Consider a
geodesic s (semicircle orthogonal to the complex plane) in H3. It intersects a finite or
infinite number N of polyhedral images, say T (F), ..., T*¥(F). Evidently we can label
them as adjacent. We denote the arc of s lying in T7*(F) by s,. So we can regard s as
the ordered sequence of arcs {s,, }i=1,..~. The projection of s into (F,T') we define as
the ordered sequence {T;™(sn,)}i=1,..nv of arcs in F, cf. Sec. 8. Initial and end points
of adjacent arcs, lying on the concentric hemispheres bounding F, are identified by T,
so that we obtain a smooth geodesic in the 3-manifold (F,I'). Every geodesic can be
realized in this way. The whole works because the covering group I leaves the metric of
H? invariant. We get so a perfectly quantitative realization of geodesic motion in the
3-manifold. The qualitative behavior of a geodesic depends very much on whether the
initial and end points of the covering geodesic s are in the limit set A(T'), see Figs. 2-4.

3. THE CHAOTIC CENTER OF AN INFINITE, MULTIPLY CON-
NECTED 3-MANIFOLD

There are two generic classes of open hyperbolic 3-manifolds, namely solid handlebodies
of genus g > 1 (the product of a finite open interval and a disc with some smaller discs
removed), and thickened Riemann surfaces of genus g > 2, (the product of a finite open
interval and a sphere with g handles attached). All that what has been said about the
solid torus in Sec. 2 carries easily over to these cases [13, 14], and so we sketch them
very shortly here.

The covering space constructions are indicated in Figs. 5-7, to which we refer in
the following. The 3-manifolds (F,I') are again represented by a polyhedron F whose
faces are identified in pairs by transformations T} that leave the H3- metric invariant.
The covering group T' is now the discrete group consisting of all words with letters T/,
If we apply I' to F' we get a tiling of H®, which means that the I-images of F (apart
from the identity) fill the interior of the hemispheres that bound F, cf. Figs. 5a and
6a. These images have accumulation points in the complex plane, like 0 and oo in Fig.
la. In the case of Fig. 5 they constitute a Cantor set A(T), totally disconnected and
dense in itself, but not self-similar [18], in Fig. 6a they are a closed, fractal curve. The
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Figure 2a. The covering space construction, namely the representation of a
3-manifold as a polyhedron F with face-identification, is the appropriate means
to study quantitatively geodesic motion on a multiply connected manifold. Every
trajectory in (F,T) can be obtained by projecting a covering trajectory (semicir-
cle in H3) into the polyhedron F. The arc s, lying in the tile T7(F), is mapped
into F by T,™(F) . The trajectory in the 3-manifold appears now as the or-
dered sequence of arcs (Ta(s-1), S0, T 2(81), T 2(s2), Tz 3(s3)) . The initial and
end points of the arcs are identified by T,, as indicated by the hatched rays.

e o

Figure 2b. The topology of the trajectory in Fig. 2a.
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Figure 3. The covering trajectory is here a straight line (s_oo, ..., 30, -+ 300 ),
connecting the two limit points 0 and co. Its projection into F is sg, infinitely
covered by the images T;™(sp) . sg is the only closed geodesic loop. It introduces
a length scale in this infinite space. The hyperbolic length of this loop is log |a|.
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Figure 4a. The covering trajectory (s_g, ..., g, ..., Soo) has only one end point,
00, in the limit set. The projected arc pieces T;"(s,) accumulate at the limit
cycle, cf. Fig. 3.
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Figure 4b. The topology of the trajectory in Fig. 4a. Starting at infinity, it
loops asymptotically into the limit cycle.

tiling I'(F') of H? induces a tiling of the complex plane, which can be used to determine
the limit set A(T), cf. Figs. 6b and 7a-c.

Geodesic motion on these multiply connected manifolds (F,T') can be realized in
the same way as in the case of a solid torus, cf. Figs. 1-4, by projecting a H3-geodesic
with the covering group I into F.

Let us look on the qualitative behavior of trajectories, keeping in mind Figs. 1-4.
What is the analogue to the closed geodesic loop in Fig. 37 Let us start with the
3-manifold that has as limit set A(T') a circle, cf. Fig. 6b. Consider the set of all the
covering geodesics that have initial and end points on this circle. These arcs cover the
hemisphere C(A) placed on the circle. This hemisphere intersects all the polyhedral
faces erected on the base circles in Fig. 6a. Consider the region of this hemisphere
that lies above the polyhedral faces. We identify its boundary arcs, which lie on the
polyhedral faces, as indicated in Fig. 6a. In this way we obtain a closed surface of genus
two, a doughnut. This Riemann surface embedded in the 3-manifold is the analogue
to the closed loop of Fig. 3. Clearly this surface has finite area, a metric of constant
curvature —1 is induced on it from H3: it is the center C(A)\ T of the open 3-manifold
(F,T).

Bounded geodesics in (F,I') have covering geodesics which have initial and end
points in the limit set (as is the case in Fig. 3). It is easy to see that all these bounded
geodesics lie in the center C(A)\T'. Geodesics on such a compact surface have all kinds
of chaotic properties, almost all are densely filling the surface, some are closed loops.

We ask what happens with a trajectory that has a covering trajectory whose initial
and end points are not in A(T'), but very close to it. The corresponding geodesic in
the 3-manifold will still tend from infinity to infinity, as in Fig. 2, but it will loop a
long time in a region close to the center. Such geodesics are not dense or ergodic or
mixing or whatever in the strict mathematical sense, but in any practical way they
will appear as such, provided that the end points of the covering geodesic are close
enough to the limit set. This is important, for in my opinion some kind of erratic
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Figure 5a. Covering space construction of a handlebody. We choose 2g
mutually disjoined hemispheres and identify them in pairs with elements 7T of
the invariance group of the hyperbolic metric, so that T; maps the outside of
one sphere onto the interior of the other. The polyhedron F is now the space
above the hemispheres and the complex plane. The polyhedral faces are the
hemispheres, and there is one face at infinity of H3 , analogous to the annulus
in Fig. 1, namely the compactified complex plane with the 2g discs under the
hemispheres removed.

Figure 5b. The topology of the 3-manifold (F,T) in Fig. 5a. We compactify
H? to a ball. Its boundary at infinity is the Riemann sphere. The polyhedron F
is the hatched region. We identify the spherical caps as indicated. Topologically
we attach in this way three solid handles to the ball.
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Figure 6a. Covering space construction for a thickened Riemann surface of
genus two. Indicated are the base- circles of the hemispheres in the complex plane.
Three-manifolds of this type can be realized by a ring of intersecting hemispheres
with a suitable identification (7;). The polyhedron F comprises the space above
the hemispheres and the two faces f; and f, (hatched) at infinity. There is an
analogue to Fig. 5b.

geodesic behaviour is necessary to account for the more or less uniform distribution of
the galaxies. This uniformity does not seem to be perfect at all, and what is provided
here is just a mechanism of imperfect classical chaos to achieve that.

The example in Fig. 6b is not yet generic for an infinite hyperbolic 3-manifold.
Such a manifold has a limit set of non-integer Hausdorff dimension, cf. Figs. 7a-c. In
this case the center of the 3-manifold is a three-dimensional finite domain: we start
with the collection of all semicircles orthogonal to the complex plane which have their
initial and end points in the fractal curve, and construct the hyperbolic convex hull
C(A) of them. This is now a three- dimensional domain. We consider the part of
this domain that lies above the hemispheres in Fig. 6a, and identify its boundaries
as indicated. We obtain a three-dimensional finite domain in the 3-manifold, which is
itself not a manifold because it is pleated [13] due to the fractal nature of the limit set.
The scenario concerning geodesic motion is otherwise quite similar to the foregoing.
The bounded chaotic trajectories lie in this center, and nearly chaotic trajectories loop
close to it.

4. GEODESIC MOTION IN MULTIPLY CONNECTED RW-COSMOLOGIES

These cosmologies are topologically the product of a hyperbolic 3-manifold and a time
axis, Rt) x (F,T), the time axis R(*) may be infinite, semi-infinite or whatever. The
line element in the covering space R(+) x H3 is ds? = —c?dr? + a*(7)do?, with do as in
Sec. 2. The corresponding metric we denote by gff' , the a%-scaled Poincaré metric on
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Fig. 6b

the spacelike sections we denote in the following by g/;. The metric gZ¥ gets induced
on R x (F,T). Solving the geodesic equations in R(*) x H®, we realize that the
spacelike projections of the world lines are the covering geodesics described in Secs. 2
and 3. Their projections into (F,T') inherit the time parametrization of the covering
trajectories. A covering trajectory will not reach the boundary at infinity of H® within
a finite time. That means that its projection into the center of the 3-slices can be dense
at best in the limits 7 — 0,(—00), 400, i. e. backwards in time or at the end of the
expansion. It may also happen, depending on the expansion factor a, that the covering
trajectory does not reach the boundary even in these limits. That means that the
actual covering trajectory is only a finite arc, well separated from the complex plane.
If we project this arc into the center C(A)\T', we get a trajectory of finite length. This
trajectory may come close to every point in the center, but it is not dense in the strict
sense.

Summing up, there is a large proportion of trajectories, namely those whose cov-
ering geodesics have end points close to the limit set (this set can have a dimension
close to two), which will spend a long time in a domain close to the center of the 3-
manifold, looping around there in an erratic way. This can be a mechanism to generate
the current imperfect uniformity of the galactic background [6, 8].

Concerning Einstein’s equations in this context [19], we mention that the curvature
tensor of the covering space projects as it stands onto R(*) x (F,T'), likewise the energy-
momentum tensor. This is so because their dependence on the space coordinates is only
via the Poincaré metric, and thus both tensors are invariant with respect to the covering
group. There is always the same well known relation between pressure, density, and the
expansion factor, independent of the topology. Therefore it seems to me difficult to gain
information about the evolution of the universe on a global level by means of Einstein’s
equations. In my view it is also a mistake to rely on the positivity arguments for pressure
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Figure 6b. A tiling on the boundary of H? that is induced by the tiling T'(F).
The domain in the middle is the hatched domain f; in Fig. 6a, bounded by
circular arcs on the base circles. The accumulation points of the tiles define in
this case a circle A(T'), corresponding to the closed curve indicated in Fig. 6a.
All tiles are I'-images of fj.



Fig. 7a-c
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Fig. 7a






Fig. 7¢

Figure Ta-c. Different realizations of the pattern of base circles give rise to
globally non-isometric manifolds. Depicted is a sequence of deformations of the
polyhedron F in Fig. 6b. To obtain the polyhedral tiling of H® we extend the
circular arcs that bound the tiles to circles, and place hemispheres onto them.
The fractal boundary curves of the depicted tilings are continuous images of the
limit circle in Fig. 6b. They have a Hausdorff dimension 1 < § < 2, but they are
not self-similar. These fractal limit sets at the boundary of the covering space
determine the qualitative properties of geodesics in the 3-manifold.



and energy derived from them, which make statements about the asymptotic form of the
expansion factor. The predictions derived in this way are fairly unacceptable, despite of
attempts to rescue them by means of information theoretical and biological arguments
[20]. Dyson claims that time is without end, which naturally raises the question if time
is also without beginning...

5. EXTENDED RW-COSMOLOGIES

All that what has been said so far refers to a static 3-space geometry, the spacelike
slices (F,T') are time independent, and so is the RW-metric in the covering space, apart
from the trivial time-dependence via the expansion factor. However, the polyhedron F
together with its face-identifying transformations T; can vary. For example, the a in
Fig. 2 may describe some path in the region |a| > 1. Different a correspond to globally
non-isometric 3-manifolds of curvature —1, cf. Sec. 2. There is another way to describe
this variation of the 3-manifold in its deformation space, the region |a| > 1. We keep
the polyhedron F' as well as the covering group time independent, which is necessary if
we want to attach to the 3-manifold a time axis, and vary instead the Poincaré metric
g5 in H?, which is induced onto (F,T'). To vary means here that we replace it by a
time dependent tensor field §;, which is periodic, i.e. invariant, with respect to the
covering group I'. Instead of ds® we consider d3? = —c2dr? + §;dz'de?, &* = (a,t),
on R x (F,T). The covering geodesics are now more complicated curves, but the
projection mechanism into the 3-manifold remains unchanged.

Let us discuss that a little more explicitly. Imagine that there are two tori, as in
Sec. 2, (F,T,), @ > 1, and (F, Th), T\ : (2,t) = &*(z,t), A > 0, with F the polyhedron
defined by the hemispheres r = 1 and r = o*. We construct a diffeomorphism % of H?,
so that AT,h~! = T\. We have k: (z,y,t) — (22 + 3% + 3)A-V/%(z,y, 1), (z,y,t) := 2.
If we apply the coordinate transformation A to gf; we obtain

3ij = a(T)t73(6i; + (A = 1)(2? + ¥° + £%)2'a?)

. This metric is still invariant with respect to the discrete group generated by T,. If we
impose g;; onto the polyhedron F, we get a hyperbolic 3-manifold (F, Ty, §i;) which is
isometric to (F,T)). This means that we can represent (Fy,T)) by the same covering
group and the same polyhedron as the manifold (F, T.), provided we replace g} by gi;.
Note that the length of the limit cycle of (F),T) is Alog @, cf. the caption of Fig. 3.
We denote by H3 the upper half-space endowed with g;;. The 3-manifold represented
as (F,T,, gi;) with covering space H3 we can then easily extend to a 4-manifold using
the line element d3? as indicated above. The crucial point here is that this extension
remains possible even for a time-dependent A. In this case we cannot use (F,Th) ,
W (cf. Sec. 4), and R™) x H®, because g is not invariant with respect to the
time-dependent covering group generated by T(r). As pointed out in Sec. 2, A(7)
describes a path in the deformation space of the topological manifold. The spacelike
slices have always curvature —1/a%(7), independent of A(7). The energy momentum
tensor, defined by the Einstein tensor and d3? in R™*) x H3 projects onto the manifold
R(+) X (F Ta) gz])

- Concerning the technical problem of calculating geodesics and wave fields in
the covering space R(*) x H3 endowed with d3?, we assume that A(7) is varying
adiabatically. Then d3? is approximately generated by applying the transformation
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7 — 7,2° — h*(z,7), to the RW-line element ds?, cf. Sec. 4. The gg,, which make
the difference, can be taken into account by Green-Liouville asymptotics. If A* is in-
dependent of time this correspondence between ds? and d3? is exact, and shows how a
coordinate transformation in the covering space can give rise to non-isometric manifolds.
Infinitesimal gauge transformations are generated by vector fields that are invariant with
respect to the covering group, which is clearly not the case with the transformation A*.

If we consider generic 3-manifolds with non-abelian covering groups, cf. Sec. 3,
we have to construct a diffeomorphism A of H3, so that the hT;h~! are again Mobius
transformations. This is rather tedious to do in practice, see [5] for a similar problem in
two dimensions, and there is a simpler way to realize small global deformations, without
explicit knowledge of k.

We construct g;; by adding to the Poincaré metric a field hr; that is invariant with
respect to the covering group T, §i; = a?(7)(t7%6;; + hj;). Such invariant tensor fields
can be generated by periodizing an arbitrary symmetric field h;;(z,t,7) on H® :

R(z,t,7) = 3 hia((2,8), ) ' (2, O [V (2, )],

y€r

where 4’ denotes the Jacobian of the Mdbius transformation. Because §;; is invariant
with respect to I', (F,T,§;(7)) is a manifold with covering space H3. Clearly, for
arbitrary fields A,;; this manifold will not be of constant curvature. To insure that, the
Ricci tensor must be proportional to g;;. If hr is small we may linearize R;;(§), using as
background metric the Poincaré metric. The resultmg equation for hr is invariant with
respect to I'. Therefore it is enough to find non-periodic solutions h,, and periodize
them as shown above, compare the spectral analysis of the electromagnetic field in this
context [8].

Finally, I would like to comment on Euclidean cosmologies of finite size, cf. [21],
which show a certain resemblance with Mixmaster models, and where it is particularly
easy to construct the diffeomorphism ~ and the deformation space.

We consider the Minkowski line element on R(*) x R3, and the Euclidean 3-
manifold (F,T.), namely the unit cube F. in B3, with opposite faces identified in pairs
by Euclidean translatlons, the generators of I'.. Next we cons1der a parallelepiped F
generated by the vectors & := (a,0,0), b := (b, by,0), ¢ := (c1,c¢2,c3); where a, b;, ¢;
are real and opposite faces again identified by Euclidean tra,nslatlons which generate
a group I'. The Euclidean manifolds (F,, T ) and (¥, T") are isometric 1ff F. and F are
congruent. We construct readily a linear transformation A in R3, that maps F, onto
F, so that we have hT.h~! = I'. Evidently (F I') is isometric to (FeyTey Gi5), Gig -
SmnhTThT. The coefficients a, b;, ¢; are arbitrary functions of time. They parametnze
completely the six-dimensional deformation space. If we replace §;; in the Minkowski
metric by §;; we get the line element d3? of the covering space R(H) x R® . If b, =
¢ = ¢z = 0, we have §;; = diag[a®(1), b}(7), c3(7)] on the spacelike slices (F;,T.). The
expansion factors appear here as a path in the deformation space.

6. TOPOLOGICAL BACKSCATTERING AND PARTICLE PRODUC-
TION IN ELECTROMAGNETIC AND NEUTRINO FIELDS.

In Secs. 2 and 5 we discussed how an open hyperbolic 3- manifold can undergo global
metrical deformations, without changing its constant curvature. In fact this condition
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can be relaxed, there is no necessity to choose a priori constant curvature, nearly con-
stant curvature and a metric that is uniformly close to the Poincaré metric will likewise
do. The covering space formalism is sufficiently flexible to incorporate also large local
perturbations and singularities.

In simply connected RW-cosmologies it is known for a long time [22, 23] that vari-
ations of the expansion factor can lead to particle creation in quantum fields, and to
backscattering in classical fields. I mention here, that one does not need a rapidly vary-
ing expansion factor to obtain this effect, linear expansion causes in a simply connected
open RW-cosmology particle creation in a massive Dirac field [9].

These effects cannot happen in conformally coupled fields, like neutrinos and elec-
tromagnetic fields, because in the solutions of the corresponding wave equations the
expansion factor scales out with a simple power law [1, 24]. But global metrical defor-
mations of the 3-space manifold do create particles even in conformally coupled fields,
Fig. 8 illustrates how this comes about. We divide the time axis 7 for simplicity into
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Figure 8.  Global metrical deformations of the spacelike slices lead to par-
ticle creation and backscattering. A wave packet, initially composed of positive
frequencies, receives an admixture of negative frequencies during the deformation.

* three intervals. In I and III the metric ds? on the spacelike slices is time independent,
apart perhaps from a time dependence via the expansion factor, that is irrelevant here.
The polyhedron F as well as the covering group is time independent in all three inter-
vals. Under these conditions the wave equation is time separable, and because the field

is also conformally coupled, positive and negative frequencies can be unambiguously
defined.

In the second interval a global metrical deformation takes place, the line element
on the covering space is given now by d3? in Sec. 5. In this period the wave equation is
not separable, and the particle/antiparticle concept loses its meaning here. Finally, in
interval III, the general solution of the wave equation is a linear combination of positive
and negative frequency modes. If the variation in II is generic, none of the coefficients
c1, ¢z will be zero. Therefore antiparticles are created in the quantum case, and a
backscattered wave appears in the case of an electromagnetic field.
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Figure 9. Wave fronts of horospherical elementary waves generated at a point
7 at infinity of H3 (the horizon). They appear as the surfaces of constant phase
in the eigenfunctions of the Maxwell equations. The bundle of rays issuing from
7 comprises their orthogonals. Accordingly the surfaces of constant action and
phase coincide for rays and elementary waves emanating from a point at infinity.

7. ANGULAR FLUCTUATIONS IN THE TEMPERATURE OF THE MI-
CROWAVE BACKGROUND

Angular anisotropy in the Planck distribution is a possible consequence of global met-
rical deformations of the spacelike slices. Let us start with a simply connected RW-
cosmology and the line element ds? in Sec. 4. Because H® is homogeneous, it happens
that the eikonal of geometric optics appears in the phase of the spectral elementary
waves of the Maxwell equations in the covering space. This relation is in other systems
only true approximately, semiclassically, here and in homogeneous spaces in general it
is exact, cf. Fig. 9.

Geometric optics does not know the concept of momentum. However, we can
attach to the rays a momentum via the Einstein relation p, = hk,. So we obtain a
vector field on H3, p,(z,t,7;7,s), describing the momentum of a horospherical bundle
of classical flow lines where s is a spectral parameter, labeling the elementary waves.
The directions are labeled by 7, cf. Fig. 9. It is easy to see that this low, coming onto
an observer at (z,t), is isotropic.

We project the horospherical bundles together with the vector fields attached to
them into the 3-manifold (F,T'). The spectral parameter n is now restricted to the
region outside the base circles of the polyhedral faces, f; and f; in Fig. 6a, namely to
the boundary at infinity of the 3-manifold. It is easy to see that for any given p,(z,t)
in F there is exactly one ray coming from the boundary, that has this momentum at
(2,t). Thus the flow stays isotropic, and we have again the same Planck distribution
p(hv/kT) as in Minkowski space.

Let us finally switch on adiabatically a global deformation §;; of the 3-space met-
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ric, cf. Sec. 5, compare also [25] for the case of local fluctuations. The perturbed
horospherical eikonal for rays issuing at some point 7 on the horizon, cf. Fig. 9, is
YF = T + x(2,t,7,7), where x is a periodic scalar field with respect to the covering

group. The perturbed frequencies are 7 = v (1 + -:;%;—?), which means that we have

to replace in p(hv/kT)dv the temperature by T = T (1 - %%Zf‘), which amounts to an
angular variation 7 of the temperature in the distribution, that remains otherwise un-
changed [8]. The adiabatic time dependence of the temperature reminds us that we have
here only a first approximation to a non-equilibrium process {26]. A further nice feature
of these infinite cosmological models is that we can carry out the thermodynamic limit
in them.

8. PARITY VIOLATION DUE TO SELF-INTERFERENCE OF SPACE-
REFLECTED WAVES

A space reflection in the covering space H? is realized as P(z,t) = (|z|* + t2)~}(—2, t).
The center of this reflection is (0,1); any other point in H*® will likewise do, but the
formula for P gets more complicated. The geometric meaning of P(z,t) is that the
point (0,1) lies always in the middle of the geodesic joining (z,t) and P(z,1).

The universal covering space construction provides here again an easy and explicit
way to define a space reflection on the multiply connected 3-space [9]. At first we define
the covering projection 7*, H® — F, n7(z,t) = v7(z,t), if (2,t) € 7(F). We refer here
to the tiling of H® by images y(F), v € T, of the fundamental polyhedron F. The space
reflection in (F,I') we define finally by PT(z,t) = n*(P(z,t)). The point of inversion is
nT(0,1), which lies in the middle of a geodesic joining (z,t) and PF(z,1).

The classical geodesic equations are reflection invariant, but the situation is quite
different concerning wave mechanics. Imagine a wave packet concentrated on a finite
domain in the manifold (F,T). If we apply PT, it can happen that the reflected wave
wraps around a handle of the manifold, cf. Fig. 10. Note that the length of the geodesic
loop in Fig. 3 can be arbitrarily close to zero. The wave packet starts to interfere with
itself, and its norm is not preserved.

Because of this self-interference the space reflection symmetry is already broken on
the level of the free Dirac equation. The T-symmetry is likewise broken because of the
time dependence of the metric. C is still a good symmetry, but all combinations of C,
P, and T are broken. That is remarkable, because usually one has to attach on purpose
symmetry breaking interactions in order to achieve this. One can speculate if the baryon
asymmetry can be topologically generated. Likewise, if one believes in topologically
generated elementary particles, particles as topological/metrical excitations, one could
try to understand C P violation as a self-interference effect.

9. CONCLUDING REMARKS

The ultimate aim of cosmology is perhaps to relate the microscopic laws of nature, that
we describe now by Newtonian and quantum mechanics, to the global structure and
the evolution of the universe. Examples for that are Mach’s principle or Dirac’s large
number hypothesis.
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The most important lesson that we have learnt from the revival of classical me-
chanics during the last two decades is that the instability and unpredictability of clas-
sical systems are more the rule than the exception, contrary to that what hitherto has
been taught. Dispersion in low dimensional classical systems makes it in practice impos-
sible to view Newton’s equations as an initial value problem [5]. The global dynamics
in the cosmology presented here is a good example for that. In fact, trajectories which
loop a long time close to the chaotic center of the manifold are highly sensitive with
respect to the initial data: if the covering trajectory is close to the limit set, then its
projection into F consists of many arc pieces, and the initial error multiplies whenever
two pieces are glued together.

This instability strongly suggests to use probability densities rather then world
lines to describe the classical dynamics adequately. A formalism to do that my means
of horospherical flows can be found in [7, 16]. One can then also use the fact that

Figure 10. In two dimensions: a wave packet concentrated on a strip. The space
reflection wraps the strip around the handle, so that it overlaps with itself. That
results in self-interference.

the horospherical eikonal appears in the phase of the quantum mechanical elementary
waves, to compare classical with quantum dispersion. Dispersion is inherent in the
dynamics, whatever description one uses.

The phenomena reviewed here indicate that from the investigation of the topo-
logical structure of space and time further surprising consequences can be expected.
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