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h i g h l i g h t s

• A nearly degenerate electron plasma pervading an ionized high-density background medium is studied, as it occurs in stellar matter.
• The Dirac equation coupled to the permeability tensor of the medium leads to nonlinear electron dispersion in the ultra-relativistic

regime.
• The quantized spectral density of a low-temperature electron gas in a dispersive medium is shown to be mechanically and thermally

stable.
• The nonlinear electron dispersion affects the mass–radius relation of white dwarfs, whose mass can surpass the Chandrasekhar limit.
• White dwarf progenitors of super-Chandrasekhar mass Type Ia supernovae: estimates of their central mass density, incompressibility

and speed of sound.
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a b s t r a c t

The effect of nonlinear ultra-relativistic electron dispersion on the mass–radius relation
of high-mass white dwarfs is studied. The dispersion is described by a permeability
tensor in the Dirac equation, generated by the ionized high-density stellar matter, which
constitutes the neutralizing background of the nearly degenerate electron plasma. The
electron dispersion results in a stable mass–radius relation for high-mass white dwarfs,
in contrast to a mass limit in the case of vacuum permeabilities. In the ultra-relativistic
regime, the dispersion relation is a power law whose amplitude and scaling exponent is
inferred from mass and radius estimates of two high-mass white dwarfs, Sirius B and LHS
4033. Evidence for the existence of super-Chandrasekharmasswhite dwarfs is provided by
several Type Ia supernovae (e.g., SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc), whose
mass ejecta exceed the Chandrasekhar limit by up to a factor of two. The dispersive mass–
radius relation is used to estimate the radii, central densities, Fermi temperatures, bulk and
compression moduli and sound velocities of their white dwarf progenitors.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this paper is to study the effects of nonlinear electron dispersion in high-mass white dwarfs. We derive a
stable mass–radius relation which remains valid above the Chandrasekhar mass limit of 1.44 solar masses due to nonlinear
electron dispersion at ultra-relativistic energies. To this end, we determine the impact of dispersion on the thermodynamic
variables of a nearly degenerate (high-density low-temperature) electron plasma. The quantized spectral density of the ultra-
relativistic electrons is obtained by coupling the Dirac equation to the permeability tensor generated by the ionized stellar
matter. The electronic dispersion relation defined by the permeabilities admits a power-law form in the ultra-relativistic
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regime, whose amplitude and scaling exponent can empirically be determined frommass and radiusmeasurements of high-
mass white dwarfs.

We calculate the entropy variable subject to electron dispersion and demonstrate thermodynamic stability, that is
positive heat capacities and compressibilities. We derive the thermal equation of state of the electron plasma, which is
polytropic in the totally degenerate ultra-relativistic regime, and then use the Lane–Emden equation for polytropes to derive
the mass–radius relation for high-mass white dwarfs.

This mass–radius relation crucially depends on the amplitude and the scaling exponent of the electronic dispersion
relation. In the case of vacuum permeabilities, the ultra-relativistic dispersion relation is linear, resulting in a mass limit
instead of a mass–radius relation. In contrast, we treat the ionized stellar matter as a permeable medium pervaded by the
electron gas, and infer the permeabilities from mass and radius estimates of high-mass white dwarfs. In this way, we can
specify all parameters in the dispersive ultra-relativistic mass–radius relation.

The mass ejecta of several Type Ia (thermonuclear) supernovae (e.g., SN 2013cv [1], SN 2003fg [2], SN 2007if [3] and
SN 2009dc [4]) substantially exceed the mass limit of 1.44 M⊙ and suggest super-Chandrasekhar mass progenitors. Using
estimates of the ejectamass and applying the dispersivemass–radius relation,wederive radius anddensity estimates of their
white dwarf progenitors. The electron dispersion is treated as a genuine nonlinear effect rather than a small perturbation of
the linear vacuum dispersion relation, given that the mass of the white dwarf progenitor of supernova SN 2009dc exceeds
the Chandrasekhar mass limit of 1.44M⊙ by almost a factor of two. The central density of the SN 2009dc progenitor reaches
the neutron drip density, so that white dwarf masses much higher than 2.8M⊙ are not attainable.

In the following, we give an outline of this paper. In Section 2, we study relativistic fermionic spectral densities in a
dispersive medium. The dispersion relation is derived from the Dirac equation coupled to an isotropic energy-dependent
permeability tensor in analogy to electromagnetic theory. This changes the linear ultra-relativistic vacuum relation E ∼ p
into a power law, E(p) ∼ m(p/m)η/(ε0µ0), where ε0 and µ0 are permeability amplitudes, m denotes the electron mass and
η is a positive scaling exponent. The spectral decay of the Fermi distribution dρ(p) ∝ p2dp/(eα+βE(p)

+ 1) (where α and β
are fugacity and temperature parameters defining the chemical potentialµ = −α/β) is ofWeibull type [5], the decay factor
exp(−βE(p → ∞)) being a stretched (η < 1) or compressed (η > 1) exponential.

Weibull exponentials have been extensively applied in statistical modeling. A stretched (subexponential) Weibull factor
appears as Kohlrausch function in anomalous diffusion and relaxation processes [6,7]; recent examples include diffusion in
magnetic resonance imaging [8], relaxation of nanoparticles in liquids [9] and diminution processes in viscous media [10].
The tensile fracture probability of fiber bundles is modeled as subexponential Weibull density in Refs. [11,12]. Astrophysical
applications of subexponential Weibull factors include asteroid fragmentation statistics [13], population decay statistics
of satellite ejecta [14], cosmic ray statistics [15–18], and velocity distributions of planetary surface winds [19–21]. The
population growth and epidemic models in Refs. [22,23] exemplify interdisciplinary applications of sub- and super-
exponential (compressed) Weibull factors. Densities interpolating between Weibull exponentials and power laws have
been used to model wealth distributions [24] and stock market volatility [25,26] as well as interevent times in human
dynamics [27]. Network applications of Weibull densities are discussed in Refs. [28–31].

The Weibull decay of the above stated Fermi distribution is sub- or super-exponential for dispersion exponents η < 1
and η > 1, respectively, which affects the fugacity expansions discussed in Section 3, where we study the nearly degenerate
ultra-relativistic quantum regime, subject to nonlinear electron dispersion. Starting with the integral representations of the
thermodynamic variables derived in Section 2, we perform a high-density low-temperature fugacity expansion, obtaining
the two leading orders of the electronic number count, internal energy, pressure and entropy in (α, β, V ) parametrization.

In Section 4, we discuss the effect of the nonlinear dispersion relation on the mechanical and thermal stability of the
electron gas in the nearly degenerate regime. By switching to the (N, β, V ) representation of the energy, pressure and
entropy variables, we derive the thermal equation of state, the isochoric and isobaric heat capacities CV ,P and the isobaric
expansion coefficient, as well as the isothermal and adiabatic compressibilities κT ,S . We demonstrate, by explicit calculation,
that the equilibrium stability conditions κT > κS > 0 and CP > CV > 0 are satisfied for positive scaling exponents η in the
dispersion relation. We also obtain fugacity expansions of the adiabatic bulk modulus, the compression modulus (adiabatic
incompressibility) and the speed of sound in the ionized background medium.

In Section 5,we study the effect of electron dispersion on themass–radius relation of high-masswhite dwarfs.We employ
the thermal equation of state in the totally degenerate ultra-relativistic regime, P ∝ (N/V )1+η/3, where η is the scaling
exponent of the electronic dispersion relation E ∼ m(p/m)η/(ε0µ0). As the thermal equation has a polytropic form, the
stellar structure equations can be reduced to the Lane–Emden equation, which admits stable solutions for scaling exponents
η > 1 and allows us to derive an explicit mass–radius relation for high-mass white dwarfs. This dispersive mass–radius
relation depends on the scaling exponent η and the product ε0µ0 of the permeability amplitudes in the electronic dispersion
relation. These are two additional (fitting) parameters as comparedwith the linear ultra-relativistic dispersion relation E ∼ p
in vacuum (ε0µ0 = η = 1) which gives a mass limit instead of a mass–radius relation. The Lane–Emden equation does not
define a mass limit for dispersion exponents η > 1, which opens the possibility of super-Chandrasekhar mass white dwarfs
discussed in Section 6.

In Section 6.1, we use the mass–radius data of two high-mass white dwarfs, Sirius B [32] and LHS 4033 [33], and
the dispersive mass–radius relation derived in Section 5 to infer the scaling exponent η = 1.240 and the amplitude
ε0µ0 = 4.85/µ1+η/3

n of the electronic dispersion relation. µn denotes the molecular weight per electron (nucleon–electron
ratio, approximately µn ≈ 2 for white dwarfs, unless neutronization by electron capture sets in, which increases µn, cf.
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Section 6.3). The scaling exponent η = 1.240 is safely in the stability domain η > 1 of the Lane–Emden equation. In
Section 6.1, we also derive the radii and central mass densities of the white dwarf progenitors of the super-Chandrasekhar
mass supernovae SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc. Estimates of the central Fermi momentum and Fermi
temperature of the progenitor stars are given in Section 6.2, and their bulk and compression moduli, sound velocity and
gravitational surface potential are calculated in Section 6.3. In Section 7, we present our conclusions.

2. Fermionic spectral densities in a dispersive medium

2.1. Nonlinear ultra-relativistic dispersion relation

We start with the electronic Dirac equation coupled to a permeability tensor [34–36], and consider planewave solutions,
ψ = exp(ipµxµ)u(p), pµ = (−E, p). The spinor u(p) satisfies the Dirac equation in momentum space coupled to a dispersive
isotropic permeability tensor gµν(p),

(iγµgµνpν + m)u(p) = 0, g00
= −ε(p), g ik

=
δik

µ(p)
, (2.1)

with vanishing flanks g0i
= 0. The sign convention for the Minkowski metric is ηµν = diag(−1, 1, 1, 1), the Dirac matrices

satisfy γµγν + γνγµ = 2ηµν , andm is the electron mass. By squaring the Dirac equation and using the plane-wave ansatz as
stated above, we find the Klein–Gordon equation coupled to the squared permeability tensor hµν = gµαηαβgβν :

(hµνpµpν + m2)u(p) = 0, h00
= −ε2, hik

=
δik

µ2 , (2.2)

and h0i
= 0, which defines the electronic dispersion relation

E(p) =

√
p2 + µ2(p)m2

ε(p)µ(p)
. (2.3)

(ℏ = c = 1.)Wewill focus on the ultra-relativistic limit, p/m ≫ 1, and assume power-law asymptotics of the permeabilities,
ε ∼ ε0(p/m)χ , µ ∼ µ0(p/m)ϕ , with positive dimensionless amplitudes ε0, µ0 and real exponents χ and ϕ. For exponents
ϕ < 1, the ultra-relativistic limit of the dispersion relation (2.3) reads

E =
m
ε0µ0

(p/m)η, η = 1 − χ − ϕ, (2.4)

since the mass term µ2(p)m2 in (2.3) drops out in leading order. (The electron mass in (2.4) is just a convenient scale
parameter.) The group velocity ηE/p can approach zero (0 < η < 1) or become superluminal (η > 1) in the ultra-relativistic
limit; the electromagnetic counterpart is ‘slow’ or ‘fast’ light in highly dispersive media [37–39]. If η < 0, the group velocity
is negative, pointing in the opposite direction of the energy transfer [40].Wewill use the shortcut E = pη/aη , with amplitude
aη = mη−1ε0µ0, and also restrict the exponent η to be positive. In the case of vacuum permeabilities, χ = ϕ = 0, η = 1,
ε0 = µ0 = 1, the dispersion relation (2.4) is linear. The permeabilities can be reparametrized by energy via (2.4), but we
will use a momentum rather than energy parametrization of the spectral density, see (2.5).

In the non-relativistic regime, p/m ≪ 1, we assume constant positive permeabilities, ε ∼ εnr, µ ∼ µnr instead of power
laws and find, by expanding (2.3), the dispersion relation E ∼ m/εnr +p2/(2εnrµ2

nrm). This resembles the dispersion relation
in electronic band theory, where εnrµ2

nrm is the effective mass and m/εnr the band gap. In band theory, the effective mass
is generated by adding a perturbative Bloch potential to the free electronic Lagrangian, whereas the permeability tensor in
(2.1) and (2.2) affects the kinetic part of the Lagrangian [34,35]. In this paper, we will study the ultra-relativistic regime,
p/m ≫ 1, admitting the dispersion relation (2.4).

2.2. Quantized thermodynamic variables

We will study an electron gas at low temperature and high density, defined by the spectral number density

dρ(p) =
4πs
(2π )3

p2dp
eα+βE(p) + 1

, (2.5)

where E(p) is the ultra-relativistic dispersion relation (2.4), s = 2 is the electronic spin degeneracy, f = e−α the fugacity,
and β = 1/(kBT ) the temperature parameter. We will mostly put ℏ = c = kB = 1 and use the shortcut E = pη/aη for
the dispersion relation (2.4), with power-law exponent η > 0 and amplitude aη = mη−1ε0µ0, where ε0 and µ0 are positive
permeability constants andm is the electronmass.Wewill alsowriteβE(p) = β̂pη , with the rescaled temperature parameter
β̂ = β/aη . The classical spectral density is recovered if the fugacity is small, dρ ∼ 4πs(2π )−3e−α−βE(p)p2dp. This is also the
high-energy limit of (2.5). The Weibull exponential exp(−β̂pη) generates a sub- or super-exponential spectral cutoff for
0 < η < 1 and η > 1, respectively [41–44]. In the following, we will consider the opposite nearly degenerate quantum
limit [45,46] of density (2.5), −α ≫ 1, and rename the fugacity parameter as λ = −α.
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The electronic number count N , internal energy U and pressure P read

N = V
∫

∞

0
dρ(p), U = V

∫
∞

0
E(p)dρ(p), P =

1
3

∫
∞

0
E ′(p)pdρ(p). (2.6)

Since the partition function is related to the pressure by log Z = βPV in an equilibrium system, we use integration by parts
to find

log Z =
4πsV
(2π )3

∫
∞

0
log(1 + e−α−βE(p))p2dp, (2.7)

which can also be obtained by a fermionic trace calculation [16,17]. The entropy is assembled as S(α, β, V ) = βPV−λN+βU ,
with the integral representations (2.6) of particle count, energy and pressure substituted and λ = −α, cf. after (2.5).

3. Quantifying dispersion in the nearly degenerate quantum regime: fugacity expansion

The integral representations (2.6) of the quantized thermodynamic variables are of type

I[g] =

∫
∞

0

g(p)dp
eF (p)−λ + 1

, (3.1)

where F (p) = βE(p) = β̂pη , see after (2.5), and g(p) is a power-law function. (We have put λ = −α and β̂ = β/aη .) The
integrals (4.1) can be evaluated by employing a Sommerfeld expansion valid for large λ ≫ 1,

I[g] =

∫ F−1(λ)

0
g(p)dp +

π2

6
g ′

F (λ) +
7π4

360
g (3)
F (λ) + O(g (5)

F (λ)), (3.2)

gF (λ) = g(F−1(λ))(F−1)′(λ), (3.3)

where F−1(λ) = λ1/η/β̂1/η . The power-law functions g(p) in (3.1) defining the particle count, internal energy and pressure
can be read off from (2.6),

N
V

=
4πs
(2π )3

I[gN (p) = p2],

U
V

=
4πs
(2π )3

I[gU (p) = pη+2/aη], P =
η

3
U
V
. (3.4)

The entropy is thus S(α, β, V ) = (1 + η/3)βU − λN .
It suffices to calculate integral I[g] in (3.1)with apower-lawkernel g(p) = pκ , κ > 0, so that gF (λ) = λ(1+κ−η)/η/(ηβ̂ (1+κ)/η)

as defined in (3.3). It will also be convenient to introduce the parameter ξ = F−1(λ) or inversely λ = β̂ξ η , and to express
the derivatives g ′

F (λ) and g (3)
F (λ) arising in the Sommerfeld expansion (3.2) of I[g(p) = pκ ] in terms of ξ :

g ′

F (λ) = (1 + κ − η)
ξ 1+κ

η2(β̂ξ η)2
,

g (3)
F (λ) = (1 + κ − η)(1 + κ − 2η)(1 + κ − 3η)

ξ 1+κ

η4(β̂ξ η)4
. (3.5)

The integral determining the leading order in expansion (3.2) gives ξ κ+1/(κ + 1). The fugacity expansions of the number
count and internal energy in (3.4) are found by specifying κ = 2 and κ = 2 + η, respectively,

N
V

=
4πs
(2π )3

ξ 3

3

[
1 +

π2

6
3(3 − η)

η2(β̂ξ η)2
+

7π4

360
3(3 − η)(3 − 2η)(3 − 3η)

η4(β̂ξ η)4
+ · · ·

]
, (3.6)

U
V

=
4πs
(2π )3

1
aη
ξ 3+η

3 + η

[
1 +

π2

6
(3 + η)3

η2(β̂ξ η)2
+

7π4

360
(3 + η)3(3 − η)(3 − 2η)

η4(β̂ξ η)4
+ · · ·

]
, (3.7)

The expansions of the pressure and partition function are obtained via the internal energy expansion (3.7), since P =

ηU/(3V ) and log Z = βUη/3, cf. (3.4). The entropy is assembled by substituting the series (3.6) and (3.7) into S(α, β, V ) =

(1 + η/3)β̂aηU − β̂ξ ηN , see after (3.4). In this case, the leading orders in (3.6) and (3.7) cancel each other,

S
V

=
4πs
(2π )3

ξ 3

3η
π2

β̂ξ η

[
1 +

7π2

30
(3 − η)(3 − 2η)

η2(β̂ξ η)2
+ · · ·

]
. (3.8)
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The indicated second-order term is defined by the third-order terms in (3.6) and (3.7); apart from that, we will only need
the second order in (3.6) and (3.7). We note that β̂ξ η = λ = −α is the fugacity parameter, cf. after (3.4), and η > 0
is the exponent of the electronic dispersion relation (2.4). β̂ = β/aη is the temperature parameter rescaled with the
amplitude of the dispersion relation, see after (2.5). The expansions (3.6)–(3.8) give the thermodynamic variables in (α, β, V )
representation; they are based on the ultra-relativistic dispersion relation E(p) = pη/aη in (2.4) and apply in the low-
temperature high-density regime, β̂ξ η ≫ 1. In Section 4, we will identify ξ as density parameter, cf. (4.2).

4. Effect of electron dispersion on thermodynamic variables at low temperature and high density

4.1. Internal energy, entropy and isochoric heat capacity

We start by inverting the fugacity expansion (3.6) of the number density, solving for ξ . Using the shortcut

N̂ =
N
V

3(2π )3

4πs
, (4.1)

we find

ξ (β,N, V ) = N̂1/3
(
1 −

π2

6
(3 − η)

η2(β̂N̂η/3)2
+ · · ·

)
. (4.2)

The leading order thereof is the Fermi momentum, pF = N̂1/3, and the ultra-relativistic Fermi energy/temperature is
EF = kBTF = pηF/a

η with aη = mη−1ε0µ0 according to the dispersion relation (2.4). Substituting ξ (β,N, V ) into the series
expansions (3.7) and (3.8), we obtain the (T ,N, V ) parametrization of the internal energy, that is the caloric equation of state
of the electron gas,

U
V

=
4πs

(2π )3aη
N̂η/3+1

η + 3

(
1 +

π2

6
η + 3

η(β̂N̂η/3)2
+ · · ·

)
, (4.3)

and the entropy S(T ,N, V ),

S
V

=
4πs
(2π )3

1
3η
π2

β̂
N̂ (3−η)/3

(
1 +

π2

10
(2 − 3η)(3 − η)

η2(β̂N̂η/3)2
+ · · ·

)
. (4.4)

The leading order thereof can be written as S/N ∼ π2/(ηβEF), with Fermi energy EF = N̂η/3/aη . The expansion is in powers
of 1/(β̂N̂η/3)2, where β̂N̂η/3 = βEF = TF/T . The leading order of the internal energy (4.3) is independent of temperature and
defines the equipartition ratio U/N ∼ 3EF/(3 + η), cf. (4.1). The isochoric heat capacity CV = TS,T reads like S in (4.4), with
the second-order term multiplied by a factor of 3.

4.2. Mechanical and thermal stability: thermal equation of state, isobaric heat capacity, isobaric expansion coefficient, isothermal
and adiabatic compressibility

The thermal equation of state P(T ,N, V ) is obtained by substituting the Sommerfeld expansion (4.3) of the internal energy
into the ultra-relativistic identity P = ηU/(3V ), cf. (3.4),

P̂ = N̂η/3+1
(
1 +

π2

6
η + 3

η(β̂N̂η/3)2
+ · · ·

)
, (4.5)

where we have introduced the rescaled pressure variable

P̂ =
3(η + 3)aη

η

(2π )3

4πs
P . (4.6)

To obtain the volume in V (T , P,N) parametrization, we solve (4.5) for V (which appears in the rescaled number density N̂ ,
cf. (4.1)),

V =
3(2π )3

4πs
NP̂−3/(η+3)

(
1 +

π2

2
1

η(P̂η/(η+3)β̂)2
+ · · ·

)
. (4.7)

We substitute this into S(T , V ,N) in (4.4) to find the S(T , P,N) representation of entropy,

S = P̂−η/(η+3) 1
η

π2

β̂
N
(
1 +

π2

30
(2η − 3)(7η − 6)

η2(β̂P̂η/(η+3))2
+ · · ·

)
. (4.8)

The isobaric heat capacity CP (T , P,N) = TS,T reads like S in (4.8), with the second-order term multiplied by a factor of 3.
By substituting the thermal Eq. (4.5) into CP (T , P,N), we find the (T , V ,N) parametrization of the isobaric heat capacity,

CP = VN̂1−η/3 4πs
(2π )3

1
3η
π2

β̂

(
1 +

π2

30
54 − 99η + 37η2

η2(β̂N̂η/3)2
+ · · ·

)
. (4.9)
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By comparing this with the isochoric heat capacity, see after (4.4), we find

CP (T , V ,N) ∼ CV + V
π4

9
4πs
(2π )3

1

ηN̂η−1β̂3
. (4.10)

The isothermal compressibility κT = −V,P/V and isobaric expansion coefficient αexp = V,T/V are calculated from the series
V (T , P,N) in (4.7),

κT =
3

η + 3
1
P

(
1 +

π2

3
1

(P̂η/(η+3)β̂)2
+ · · ·

)
, αexp ∼

π2a2η

ηP̂2η/(η+3)β
. (4.11)

Using the leading order of the thermal equation in (4.5) and (4.6), we find

α2
exp

βκT
∼
π4

9
4πs
(2π )3

1

ηN̂η−1β̂3
, (4.12)

so that the equilibrium relation CP = CV + VTα2
exp/κT is satisfied, cf. (4.10).

To obtain the adiabatic compressibility, κS = −V,P/V , we need the V (S, P,N) representation of the volume factor. To this
end, we solve S(T , P,N) in (4.8) for β̂ in leading order, β̂ ∼ π2N/(ηP̂η/(3+η)S), and substitute this into V (T , P,N) in (4.7),

V (S, P,N) =
3(2π )3

4πs
NP̂−3/(η+3)

(
1 +

η

2π2

1
(N/S)2

+ · · ·

)
. (4.13)

The adiabatic compressibility is then found as κS = 3/((η + 3)P), and we note the ratios, cf. (4.10) and (4.11),

κT

κS
= 1 +

π2

3
1

(P̂η/(η+3)β̂)2
+ · · · ,

CP

CV
= 1 +

π2

3
1

(β̂N̂η/3)2
+ · · · , (4.14)

which are identical via the thermal Eq. (4.5), reflecting the general equilibrium relation CP/CV = κT/κS . The mechanical and
thermal stability conditions κT > κS > 0 and CP > CV > 0 are thus satisfied for positive exponents η in the electronic
dispersion relation (2.4).

4.3. Adiabatic bulk modulus, adiabatic incompressibility and speed of sound

We transform the caloric and thermal equations of state U(T ,N, V ) and P(T ,N, V ), cf. (4.3) and (4.5), into the adiabatic
(N, V , S) representation by inverting the entropy variable in (4.4) in leading order,

β̂ =
V

Ŝ
N̂ (3−η)/3, Ŝ =

3(2π )3

4πs
η

π2 S. (4.15)

The pressure P(N, V , S) then reads, cf. (4.5) and (4.6),

P =
η

η + 3

(
3(2π )3

4πs

)η/3 (ℏc)η

(mc2)η−1ε0µ0

(
N
V

)η/3+1 [
1 +

1
6π2

η(η + 3)
(NkB/S)2

+ · · ·

]
, (4.16)

where we used aη = mη−1ε0µ0, cf. after (2.4), and N̂ in (4.1), and we have restored the units. (The permeability amplitudes
ε0 and µ0 are dimensionless.) The fugacity expansion of the internal energy is found as U(N, V , S) = 3VP/η with expansion
(4.16) substituted, cf. (3.4), so that P = −U,V (N, V , S).

The adiabatic bulk modulus KS = −VP,V (N, V , S) (coinciding with the reciprocal compressibility 1/κS , cf. after (4.12))
reads KS = (1 + η/3)P with P in (4.16) substituted. Instead of volume, we may use the number density n = N/V as
parameter, so that KS = nP,n(N,N/n, S) and

P =
n2

N
U,n(N,N/n, S), P,n = n

∂2nU(N,N/n, S)/N
∂n2 , (4.17)

where nU/N is the specific internal energy density and P,n = KS/n = V 2U,V ,V (N, V , S)/N the adiabatic incompressibility
(compression modulus).

As for the speed of sound, we consider the electron gas in an ionizedmedium ofmass density ρ = mpµnN/V , wheremp is
the protonmass andµn the molecular weight per electron, see after (5.2). The squared sound velocity in the medium is then
obtained as pressure derivative with respect to mass density, υ2

s = P,ρ(N,mpµnN/ρ, S) = KS/ρ. Thus, υ2
s = (1 + η/3)P/ρ,

where we can switch back to the (T ,N, V ) representation and substitute P(T ,N, V ) in (4.5) and (4.6). Compression modulus
and sound velocity are related by P,n = mpµnυ

2
s .

Since EF = kBTF = (pF/a)η with aη = mη−1ε0µ0 and pF = N̂1/3, N̂ =
3(2π )3
4πs N/V , see (4.1) and after (4.2), we can write

Fermi energy and momentum as

kBTF =
(ℏc)η

(mc2)η−1ε0µ0

(
N
V

3(2π )3

4πs

)η/3
, pF = ℏ

(
N
V

3(2π )3

4πs

)1/3

. (4.18)



134 R. Tomaschitz / Physica A 489 (2018) 128–140

In the fugacity expansion of the rescaled pressure variable P̂ in (4.5), we can express the electronic number density N/V (or
N̂ in (4.1)) by TF, using β̂N̂η/3 = TF/T with β̂ = β/aη . The fugacity expansion of the speed of sound υs thus reads, cf. (4.1),
(4.5) and (4.6),

υ2
s

c2
=
η + 3
3

P(T ,N, V )
mpc2µn

V
N

=
η

3
kBTF

mpc2µn

(
1 +

π2

6
η + 3
η

(
T
TF

)2

+ · · ·

)
. (4.19)

In Eq. (4.18), the number density N/V can be replaced by ρ/(mpµn), where ρ is the mass density of the ionized background
medium, see after (4.17).

5. Effect of electron dispersion on the mass–radius relation of high-mass white dwarfs

The Newtonian hydrostatic equations of stellar structure read P ′(r) = −GM(r)ρ(r)/r2 andM ′(r) = 4πr2ρ(r), where ρ(r)
is themass density,M(r) themass in a sphere of radius r , P(r) the pressure and G the gravitational constant. These equations
can be combined to a second-order equation, (r2P ′(r)/ρ(r))′ = −4πGr2ρ(r). The boundary conditions are ρ(0) = ρcent
(central density) and ρ ′(0) = 0 (so that ρ(r) does not have a cusp at the center). We assume a polytropic equation of state,
that is a power-law relation between pressure and mass density, P(r) = Kργ (r) (which is the case for a totally degenerate
ultra-relativistic electron gas in a dispersive medium, see Sections 3 and 4), to be substituted into the mentioned second-
order equation. We write the exponent as γ = 1 + η/3, to relate it to the thermal Eq. (4.16) of the electron gas in the
zero-temperature limit; γ = KS/P is the isentropic expansion factor defined by bulk modulus and pressure, cf. after (4.16),
and P,ρ = K (1 + η/3)ρη/3 = υ2

s coincides with the leading order (zero-temperature limit) of the squared sound velocity in
(4.19).

The above stated second-order equation can be transformed to Lane–Emden form, (r̂2θ ′(r̂))′ + r̂2θ q(r̂) = 0, with
polytropic index q = 3/η and boundary conditions θ (0) = 1 and θ ′(0) = 0, where ρ(r) = ρcentθ

3/η(r̂) and r =
√
K (3 + η)/(4πGη)ρ(η−3)/6

cent r̂; ρcent is the central density ρ(0). Solutions of the Lane–Emden equation are stable for η > 1
and unstable for η < 1. (The total gravitational potential energy is −ηU , via the virial theoremwith P related to the thermal
energy U as in (3.4).) We denote the first zero of θ (r̂) by r̂0, which exists for stable solutions and defines the radius of the star
according to the indicated variable transformations,

R =

√
K (3 + η)
4πGη

ρ
(η−3)/6
cent r̂0. (5.1)

The ratio K/G has the dimension [g2cm−4(g/cm3)−(3+η)/3
], and r̂0 and θ (r̂) are dimensionless. The total mass of the star is

calculated as

M = 4π
∫ R

0
ρ(r)r2dr = 4π

(
K (3 + η)
4πGη

)3/2

ρ
(η−1)/2
cent r̂20

⏐⏐θ ′(r̂0)
⏐⏐ , (5.2)

where we used the Lane–Emden equation and integration by parts.
The mass density of a white dwarf is related to the electron density N/V in (3.6) by ρ = mpµnN/V , where mp is the

proton mass and µn the nucleon–electron ratio (molecular weight per electron), usually µn = A/Z ≈ 2 for white dwarfs.
Using the zero-temperature (zero-entropy) limit of the thermal equation (4.16), we find P = Kρ1+η/3 with amplitude K
defined by

K (3 + η)
4πGη

=
(ℏc)η

(mc2)η−1

1
4πG

1
ε0µ0

(
3(2π )3

4πs

)η/3( 1
mpµn

)(3+η)/3

, (5.3)

where we have restored the units. No further units need to be restored in (5.1) and (5.2) other than substituting this ratio.
m denotes the electron mass and s = 2 is the electronic spin degeneracy, cf. (2.5). The product ε0µ0 of the permeability
constants and the exponent η define the ultra-relativistic electronic dispersion relation (2.4).

Replacing the electronic number density by the stellar mass density ρ = mpµnN/V in the Fermi momentum (4.18), we
find

pF =

(
ρ

mpµn

)1/3(3(2π )3

4πs

)1/3

, (5.4)

and inversely, ρ = 4πsp3Fmpµn/(3(2π )3). Since the ultra-relativistic limit (2.4) of the dispersion relation applies for
pF/m ≫ 1, it is convenient to define a critical mass density ρcrit by putting pF = m in (5.4), so that

ρcrit =
4πs

3(2π )3
c6

(ℏc)3
m3mpµn, (5.5)

where we have restored the units. We note ρcrit = 9.810 × 105µn g/cm3 and the ratio µnρ⊙/ρcrit = 1.437 × 10−6, with
average solar density ρ⊙ = 1.410 g/cm3. The nucleon–electron ratio is µn ≈ 2, unless the mass density becomes high
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enough for neutronization to occur, which tends to reduce the electron number, see after (6.9). The ultra-relativistic regime
is ρ/ρcrit ≫ 1, since pF/(mc) = (ρ/ρcrit)1/3.

The stellar radius and mass in (5.1) and (5.2) can be rewritten as

R
R0

=
r̂0√

µ
1+η/3
n ε0µ0

(
µn
ρcent

ρcrit

)(η−3)/6

, (5.6)

M
M0

=
r̂20
⏐⏐θ ′(r̂0)

⏐⏐
(µ1+η/3

n ε0µ0)3/2

(
µn
ρcent

ρcrit

)(η−1)/2

, (5.7)

where ρcent is the central mass density, and we introduced the shortcuts

R0 =

(
3(2π )3

4πs

)1/2 (ℏc)3/2

c2
1

√
4πG

1
mmp

, (5.8)

M0 = 4π
(
3(2π )3

4πs

)1/2 (ℏc)3/2

(4πG)3/2
1
m2

p
, (5.9)

defining a radius and mass scale, R0 = 7.713 × 108 cm and M0 = 5.657 × 1033 g. For comparison, the solar radius and
mass scales are R⊙ = 6.957 × 1010 cm and M⊙ = 1.989 × 1033 g, cf. Ref. [47]. We also note GM0/(R0c2) = m/mp and
4πρcrit = µnM0/R3

0, cf. (5.5).
Combining Eqs. (5.6) and (5.7) by eliminating ρcent/ρcrit, we find the mass–radius relation

M
M0

=
r̂3(η−1)/(3−η)
0 r̂20

⏐⏐θ ′(r̂0)
⏐⏐

(µ1+η/3
n ε0µ0)3/(3−η)

(
R
R0

)3(1−η)/(3−η)

, (5.10)

and inversely,

R
R0

=
r̂0(r̂20

⏐⏐θ ′(r̂0)
⏐⏐)(1−η/3)/(η−1)

(µ1+η/3
n ε0µ0)1/(η−1)

(
M
M0

)−(1−η/3)/(η−1)

. (5.11)

We will consider exponents 1 < η < 3 in the dispersion relation (2.4). In this interval, the mass increases and the radius
decreases with increasing central density ρcent, cf. (5.6) and (5.7). At the lower edge η = 1, the mass in (5.7) becomes
independent of the central density, M/M0 = r̂20

⏐⏐θ ′(r̂0)
⏐⏐ /(µ4/3

n ε0µ0)3/2, and the Chandrasekhar mass limit is recovered for
vacuum permeabilities ε0 = µ0 = 1. That is, the first zero r̂0 = 6.8969, r̂20 θ

′(r̂0) = −2.0182 of the solution θ (r̂) of the
Lane–Emden equation (with η = 1, q = 3) and the conversion M⊙/M0 = 0.3515 to solar units gives the mass limit
M/M⊙ = 5.74/µ2

n or 1.435 for µn = 2, cf. e.g. Ref. [48]. As mentioned, η = 1 is the borderline between stable (η > 1)
and unstable solutions of the Lane–Emden equation. At the upper edge η = 3, the radius (5.6) becomes independent of ρcent,
R/R0 = r̂0/

√
µ2

nε0µ0 with r̂0 = π . When discussing supernova progenitors in Section 6, we will use the polytropic index
q = 3/η = 2.4188, that is η = 1.2403.

If mass and radius of the white dwarf are known as well as the exponent 1 < η < 3 in dispersion relation (2.4), we can
infer the product ε0µ0 of the permeability constants from the mass–radius relation (5.10),

µ1+η/3
n ε0µ0 = r̂η−1

0 (r̂20
⏐⏐θ ′(r̂0)

⏐⏐)1−η/3 ( R
R0

)1−η ( M
M0

)η/3−1

, (5.12)

and the central mass density ρcent from (5.6) and (5.7),

µn
ρcent

ρcrit
=

r̂30
r̂20
⏐⏐θ ′(r̂0)

⏐⏐
(

R
R0

)−3 M
M0
, (5.13)

where the dimensionless constants r̂0 and r̂20
⏐⏐θ ′(r̂0)

⏐⏐ only depend on the exponent η via the Lane–Emden equation. The
average mass density ρav = 3M/(4πR3) reads, in units of ρcrit (see (5.5) and after (5.9)),

µn
ρav

ρcrit
= 3

(
R
R0

)−3 M
M0
, (5.14)

so that ρcent/ρav = r̂30/(3r̂
2
0

⏐⏐θ ′(r̂0)
⏐⏐), cf. (5.13). Using the numerical values of r̂0 and r̂20 θ

′(r̂0) stated after (6.1), we find the
ratio of central and average density of high-mass white dwarfs as ρcent/ρav = 20.69.
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6. Super-Chandrasekhar mass white dwarfs

6.1. Mass, radii and central densities

We start with two high-mass white dwarfs, Sirius B and LHS 4033. Mass and radius estimates for Sirius B, obtained by
combining parallax, surface temperature and gravitational redshift measurements [32] are (0.94 ± 0.05)M⊙ and (8.4 ±

2.5) × 10−3R⊙. A white dwarf even closer to the Chandrasekhar limit of 1.44 M⊙ is LHS 4033, with (1.33 ± 0.02)M⊙ and
(3.6± 0.2)× 10−3R⊙, cf. Ref. [33]. The conversion from solar units toM0 and R0 mass and radius scales, cf. (5.8) and (5.9), is
effected byM⊙/M0 = 0.3515 and R⊙/R0 = 90.20.

We write the mass–radius relation (5.11) as power law R/R0 = A0(M/M0)−a, and determine the amplitude A0 =

5.074 × 10−2 and exponent a = 2.4414 by substituting the quoted Sirius B and LHS 4033 values. By comparing with
Eq. (5.11), we can infer the scaling exponent η of the dispersion relation (2.4) and the productµ1+η/3

n ε0µ0 , where ε0 andµ0
are permeability constants, cf. Section 2.1, and µn is the nucleon–electron ratio,

η =
a + 1

a + 1/3
, µ1+η/3

n ε0µ0 =
r̂η−1
0 (r̂20

⏐⏐θ ′(r̂0)
⏐⏐)1−η/3

Aη−1
0

. (6.1)

We obtain η = 1.2403 and the polytropic index q = 3/η = 2.4188. The scaling exponent of the equation of state P = Kργ
is γ = 1 + 1/q = 1.4134, cf. the beginning of Section 5. Specifying the polytropic index as q = 2.4188 in the Lane–Emden
equation, we find the zero of the solution θ (r̂) located at r̂0 = 5.1644 and the derivative r̂20 θ

′(r̂0) = −2.2193; the notation is
defined at the beginning of Section 5. We then employ the second identity in (6.1) to calculate µ1+η/3

n ε0µ0 = 4.8467. Using
µn = 2, we can specify the permeability amplitudes and exponents defining the ultra-relativistic dispersion relation (2.4)
as µ0 = 1, ϕ = 0 and χ = −0.2403, ε0 = 1.8195.

The central mass density is inferred from (5.7),

µn
ρcent

ρcrit
=

(
M
M0

(µ1+η/3
n ε0µ0)3/2

r̂20
⏐⏐θ ′(r̂0)

⏐⏐
)2/(η−1)

. (6.2)

Switching to solar units and using the above numerical values for η, r̂0, r̂20 θ
′(r̂0) and µ

1+η/3
n ε0µ0, we find the mass–radius

relation (5.11) as R/R⊙ = 7.222 × 10−3(M/M⊙)−2.4414 and the central density (6.2) as µnρcent/ρcrit = 78.92(M/M⊙)8.3242.

Remark. Wehave obtained the empiricalmass–radius relation R/R0 = A0(M/M0)−a using Sirius B and LHS 4033 data points.
If more mass–radius data points above 1 M⊙ become available, one can determine the amplitude A0 and the exponent a by
a least-squares fit. The scaling exponent η of the electronic dispersion relation (2.4) is then obtained as stated in (6.1). For
the individual mass–radius data points used in the fit, one can calculate the product µ1+η/3

n ε0µ0 individually via (5.12) and
the central densities via (5.13). If only a mass estimate of the star is available, as it happens for white dwarf progenitors of
supernovae, one uses the amplitude A0 obtained from the least-squares fit to calculate µ1+η/3

n ε0µ0 via (6.1) (as done here)
and the central density via (6.2). The radii of the progenitors are estimated by means of the mass–radius relation obtained
from the least-squares fit. Since both Sirius B and LHS 4033 are located on the R/R0 = A0(M/M0)−a curve (determined in this
way), the estimate of µ1+η/3

n ε0µ0 coincides for both stars and can be calculated via (5.12) or (6.1) and their central densities
via (5.13) or (6.2).

The possibility of white dwarfs exceeding the Chandrasekhar mass limit is suggested by several Type Ia supernovae (SNe
Ia) with mass ejecta substantially above the mass limit of 1.44 M⊙, cf. after (5.11). An ejecta mass of 1.6 M⊙ was estimated
for SN 2013cv in Ref. [1] and of 2.1M⊙ for SN 2003fg in Ref. [2] and of 2.4M⊙ for SN 2007if in Ref. [3]. The mass ejecta of SN
2009dc were estimated to be 2.8 M⊙, cf. Ref. [4], the highest mass estimate of a super-Chandrasekhar mass SN Ia obtained
so far.

To obtain estimates of the radii of the white dwarf progenitors of SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc, we
use the mass–radius relation derived from Sirius B and LHS 4033, see after (6.2), and the quoted mass estimates, see Table 1.
Also listed in Table 1 are the average mass density ρav = 3M/(4πR3) in solar units as well as normalized with the critical
density ρcrit, cf. (5.14), and the central density ρcent, also in solar units and normalized with ρcrit, calculated as stated after
(6.2).

6.2. Electronic number density, Fermi momentum and temperature

The Fermi momentum is related to the mass density by pF = mcµ−1/3
n (µnρ/ρcrit)1/3, cf. after (5.5). By making use of

pF(N/V ) and EF(N/V ) in (4.18), we find the ρ/ρcrit parametrization of the electronic number density and Fermi energy,

n =
N
V

=
4πs

3(2π )3
(mc2)3

(ℏc)3µn

µnρ

ρcrit
, (6.3)
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Table 1
Mass, radius and density parameters of Sirius B and LHS 4033 and of the white dwarf progenitors of the super-Chandrasekhar mass supernovae SN 2013cv,
SN 2003fg, SN 2007if and SN 2009dc. The mass and radius estimates of Sirius B and LHS 4033 are taken from Refs. [32,33] and the progenitor masses
from Refs. [1–4]. The progenitor radii are obtained by applying the dispersive mass–radius relation (5.11) with permeability constants inferred from the
high-mass white dwarfs Sirius B and LHS 4033, cf. Section 6.1. Also recorded are the average and central mass densities ρav and ρcent in solar units (ρ⊙ =

1.410 g/cm3) and in units of the critical density ρcrit = 9.810×105µn g/cm3 (see (5.5)) which defines the ultra-relativistic regime ρ/ρcrit ≫ 1.µn denotes
the molecular weight per electron (nucleon–electron ratio).

M/M⊙ R/R⊙ ρav/ρ⊙ ρcent/ρ⊙ µnρav/ρcrit µnρcent/ρcrit

Sirius B 0.94 ± 0.05 (8.4 ± 2.5) × 10−3 1.59 × 106 3.28 × 107 2.28 47.2
LHS 4033 1.33 ± 0.02 (3.6 ± 0.2) × 10−3 2.85 × 107 5.90 × 108 41.0 848
progen. SN 2013cv 1.6 2.29 × 10−3 1.33 × 108 2.75 × 109 191 3.95 × 103

progen. SN 2003fg 2.1 1.18 × 10−3 1.28 × 109 2.64 × 1010 1.84 × 103 3.80 × 104

progen. SN 2007if 2.4 8.52 × 10−4 3.88 × 109 8.03 × 1010 5.58 × 103 1.15 × 105

progen. SN 2009dc 2.8 5.85 × 10−4 1.40 × 1010 2.90 × 1011 2.01 × 104 4.16 × 105

Table 2
Electronic number density, Fermi momentum/energy/temperature, gravitational surface potential and surface gravity of Sirius B, LHS 4033 and the super-
Chandrasekhar mass progenitors of SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc. The electron density n(ρ) = N/V and Fermi momentum, energy and
temperature pF(ρ), EF(ρ), TF(ρ) (see (6.3) and (6.4)) are calculated at the average and central mass densities ρav and ρcent listed in Table 1. These quantities
scale with the nucleon–electron ratio, n ∝ 1/µn , pF ∝ µ

−1/3
n , EF ∝ TF ∝ µn , since the fit parameter µ1+η/3

n ε0µ0 = 4.85 is kept fixed, see Section 6.1, and
they are listed here for µn = 2. (The permeability amplitudes ε0 and µ0 and the scaling exponent η define the electronic dispersion relation (2.4).) The
surface potential GM/(c2R) and surface gravity GM/R2 , cf. after (6.9), are based on the mass and radius estimates in Table 1.

n(ρav)
[cm−3

]

n(ρcent)
[cm−3

]

pF(ρav)
[MeV/c]

pF(ρcent)
[MeV/c]

EF(ρav)
[MeV]

EF(ρcent)
[MeV]

TF(ρav)
[1010 K]

TF(ρcent)
[1010 K]

GM/(c2R) GM/R2

[cm/s2]

Sirius B 6.68 × 1029 1.38 × 1031 0.534 1.47 0.297 1.03 0.344 1.20 2.38 × 10−4 3.65 × 108

LHS 4033 1.20 × 1031 2.49 × 1032 1.40 3.84 0.983 3.42 1.14 3.97 7.84 × 10−4 2.81 × 109

progen. SN 2013cv 5.60 × 1031 1.16 × 1033 2.34 6.41 1.85 6.47 2.15 7.51 1.48 × 10−3 8.37 × 109

progen. SN 2003fg 5.38 × 1032 1.11 × 1034 4.97 13.6 4.72 16.5 5.47 19.1 3.78 × 10−3 4.14 × 1010

progen. SN 2007if 1.64 × 1033 3.39 × 1034 7.19 19.7 7.46 26.1 8.66 30.3 5.98 × 10−3 9.07 × 1010

progen. SN 2009dc 5.90 × 1033 1.22 × 1035 11.0 30.3 12.7 44.4 14.7 51.5 1.02 × 10−2 2.24 × 1011

Table 3
Electron degeneracy pressure P , bulk modulus KS , compression modulus (volume incompressibility) P,n and speed of sound υs . These quantities depend
on the mass density ρ, cf. (6.5), (6.7) and (6.8), and are listed for the average and central densities ρav and ρcent (see Table 1). The compression modulus
linearly scales with the molecular weight per electron, P,n ∝ µn , and is recorded here for µn = 2, see the remarks after (6.8) and the caption to Table 2.
The pressure is proportional to the bulk modulus, P = 0.7075 KS , cf. (6.7), due to the polytropic equation of state; the conversion to cgs pressure units is
1 MeV/cm3

= 1.602 × 10−6 dyn/cm2 .

P(ρav)
[dyn/cm2

]

P(ρcent)
[dyn/cm2

]

KS (ρav)
[MeV/cm3

]

KS (ρcent)
[MeV/cm3

]

P,n(ρav)
[MeV]

P,n(ρcent)
[MeV]

υs(ρav)/c υs(ρcent)/c

Sirius B 9.28 × 1022 6.72 × 1024 8.19 × 1028 5.93 × 1030 0.123 0.429 8.08 × 10−3 1.51 × 10−2

LHS 4033 5.51 × 1024 3.99 × 1026 4.86 × 1030 3.52 × 1032 0.405 1.42 1.47 × 10−2 2.75 × 10−2

progen. SN 2013cv 4.85 × 1025 3.50 × 1027 4.28 × 1031 3.09 × 1033 0.764 2.67 2.02 × 10−2 3.77 × 10−2

progen. SN 2003fg 1.19 × 1027 8.60 × 1028 1.05 × 1033 7.59 × 1034 1.95 6.82 3.22 × 10−2 6.03 × 10−2

progen. SN 2007if 5.72 × 1027 4.14 × 1029 5.05 × 1033 3.65 × 1035 3.09 10.8 4.05 × 10−2 7.58 × 10−2

progen. SN 2009dc 3.50 × 1028 2.54 × 1030 3.09 × 1034 2.24 × 1036 5.24 18.3 5.29 × 10−2 9.89 × 10−2

EF = kBTF =
µnmc2

µ
1+η/3
n ε0µ0

(
µnρ

ρcrit

)η/3
, (6.4)

where the nucleon–electron ratio µn has been scaled into the equations. (µnρ/ρcrit is independent of µn since ρcrit ∝ µn,
cf. (5.5).) Inserting the numerical values for η and µ1+η/3

n ε0µ0 as stated after (6.1), we obtain the number density n =

5.865 × 1029µ−1
n (µnρ/ρcrit) cm−3.

Converting to solar units usingµnρ⊙/ρcrit = 1.437×10−6, cf. after (5.5), we canwrite pF = 5.767×10−3µ
−1/3
n (ρ/ρ⊙)1/3

MeV/c and n = 8.430 × 1023µ−1
n (ρ/ρ⊙) cm−3. We also note the ratios pF(ρcent)/pF(ρav) = (ρcent/ρav)1/3 = 2.745 and

n(ρcent)/n(ρav) = ρcent/ρav = 20.69, where ρcent and ρav are the central and average mass densities, see after (5.14).
Analogously, the Fermi temperature reads TF = 1.223 × 109µn(µnρ/ρcrit)0.4134 K or TF = 4.701 × 106µn(ρ/ρ⊙)0.4134 K
in solar units, and TF(ρcent)/TF(ρav) = (ρcent/ρav)η/3 = 3.50.

The Fermi momentum scales with the nucleon–electron ratio as pF ∝ µ
−1/3
n . The number density and Fermi energy

EF(ρ)[MeV] = 0.8617 TF(ρ)[1010 K] scale as n ∝ µ−1
n and EF ∝ µn, since the fitting parameter µ1+η/3

n ε0µ0 is kept fixed. In
Table 2, we list n(ρav,cent), pF(ρav,cent), EF(ρav,cent) and TF(ρav,cent) for µn = 2.

Remark. Quantum gravity effects are believed to become relevant at the Planck energy scale EP = c2
√
ℏc/G = 1.2 ×

1019 GeV. Since the central Fermi energy EF(ρcent) of high-mass white dwarfs is in the MeV range, see Table 2, one expects
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such effects to be negligible in white dwarfs. It has recently been suggested that quantum gravity could be manifested at a
lower energy scale EP/αP, where αP is a large dimensionless constant yet to be determined [49,50]. For instance, the central
Fermi energy of the SN 2009dc progenitor is 44 MeV, which thus requires αP ∼ 3 × 1020 for quantum gravity effects to
emerge. A similar scale factor αP ∼ 1021 has been used in Ref. [51] to obtain a noticeable decrease of the Chandrasekhar
mass as a quantum gravity effect. That is, a rescaling of the Planck scale by a factor of this order of magnitude is needed
for quantum gravity effects to become observable in white dwarfs. Quantum gravity corrections to Lamb shifts and to the
muon anomalous magnetic moment have been calculated in Refs. [49,50], where an upper bound αP < 1010 was obtained
by comparison with high-precision measurements of the ground-state Lamb shift in hydrogen, and an even tighter bound
αP < 108 was inferred from muon g − 2 experiments.

6.3. Speed of sound in high-mass white dwarfs, their compression modulus and gravitational surface potential

The ρ/ρcrit parametrization of the sound velocity υs in (4.19) (zero-temperature limit thereof) is obtained by substituting
kBTF in (6.4) into (4.19),

υ2
s

c2
=
η

3
m
mp

1

µ
1+η/3
n ε0µ0

(
µnρ

ρcrit

)η/3
. (6.5)

Using the numerical values for η andµ1+η/3
n ε0µ0, cf. after (6.1), and the electron–proton mass ratio, we find υs/c = 6.816×

10−3(µnρ/ρcrit)0.2067 or υs/c = 4.225 × 10−4(ρ/ρ⊙)0.2067 in solar units, and the ratio υs(ρcent)/υs(ρav) = (ρcent/ρav)η/6 =

1.87. We also note the mass and radius scaling of the squared speed of sound at the center,

υ2
s (ρcent)
c2

=
η

3
m
mp

r̂0
r̂20
⏐⏐θ ′(r̂0)

⏐⏐
(

R
R0

)−1 M
M0
, (6.6)

where we made use of µ1+η/3
n ε0µ0 in (5.12) and µnρcent/ρcrit in (5.13).

Theρ/ρcrit parametrization of the bulkmodulusKS and compressionmodulus P,n (see Section 4.3) is found by substituting
the number density n = N/V in (6.3) into the pressure variable P in (4.16) (with the entropy dependent correction term
dropped at zero temperature/entropy) and using the critical density ρcrit in (5.5),

KS =

(
1 +

η

3

)
P =

η

3
4πs

3(2π )3
(mc2)4

(ℏc)3
1

µ
1+η/3
n ε0µ0

(
µnρ

ρcrit

)1+η/3

, (6.7)

P,n =
KS

n
=
η

3
µnmc2

µ
1+η/3
n ε0µ0

(
µnρ

ρcrit

)η/3
. (6.8)

Inserting thenumerical values as above (see after (6.1)),we find the bulkmodulusKS = 2.557×1028(µnρ/ρcrit)1.4134 MeV/cm3

and the compression modulus (incompressibility) P,n = 4.359 × 10−2µn(µnρ/ρcrit)0.4134 MeV. In solar units, KS = 1.412 ×

1020(ρ/ρ⊙)1.4134 MeV/cm3 and P,n = 1.675×10−4µn(ρ/ρ⊙)0.4134 MeV. The ratios of these variables taken at the central and
average mass densities read KS(ρcent)/KS(ρav) = (ρcent/ρav)1+η/3 = 72.39 and P,n(ρcent)/P,n(ρav) = (ρcent/ρav)η/3 = 3.50, cf.
after (5.14).

The compression modulus is related to the speed of sound and the Fermi energy by P,n = mpµnυ
2
s = (η/3)EF, see after

(4.17), (6.4) and (6.5). P,n scales linearly with the molecular weight per electron, P,n ∝ µn, in contrast to the sound velocity
and the bulk modulus which do not scale with µn since the parameter µ1+η/3

n ε0µ0 is kept fixed, cf. after (6.1). The pressure,
the bulk and compression moduli and the speed of sound are listed in Table 3, evaluated at the central and average densities
of Sirius B, LHS 4033 and the progenitor white dwarfs of the supernovae SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc.

The gravitational surface potential is related to the speed of sound at the center by, cf. after (5.9) and (6.6),

GM
c2R

=
m
mp

M
M0

(
R
R0

)−1

=
3
η

r̂20
⏐⏐θ ′(r̂0)

⏐⏐
r̂0

υ2
s (ρcent)
c2

, (6.9)

and can be calculated with the mass and radius estimates in Table 1, just by rescaling the solar potential, GM/(c2R) =

2.123 × 10−6(R/R⊙)−1M/M⊙. The surface potential of the super-Chandrasekhar mass white dwarfs recorded in Table 2
is still small enough for the Newtonian limit of the gravitational redshift to apply, z ∼ GM/(c2R). Using (6.9) and the
numerical values for η, r̂0 and r̂20 θ

′(r̂0) stated after (6.1), we find υ2
s (ρcent)/c

2
= 0.9620GM/(Rc2). The surface gravity is

GM/R2
[cm/s2] = 2.742 × 104(R/R⊙)−2M/M⊙, see Table 2.

If the central density ρcent approaches the neutron drip density ρdrip = 4.3 × 1011g/cm3, cf. Ref. [52], as is the case for
the progenitors of SN 2007if and SN 2009dc, see Table 1, neutronization due to electron capture (via inverse beta decay,
e−

+ p → n + νe) can increase the nucleon–electron ratio from µn ≈ 2 up to µn ≈ 3.3, depending on the chemical
composition of the white dwarf. The number density, Fermi momentum and Fermi energy of the progenitors of SN 2007if
and SN 2009dc in Table 2 are therefore upper/lower bounds (calculated at µn = 2), to be rescaled by a factor of (2/µn)1/3,
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2/µn and µn/2, respectively, see after (6.4). The radius and density estimates in Table 1 are unaffected by an increase of
µn, since the product µ1+η/3

n ε0µ0 of the nucleon–electron ratio and the permeability amplitudes is kept fixed as a fitting
parameter in the mass–radius relation, so that a larger µn is compensated by smaller permeability amplitudes ε0µ0 in the
dispersion relation (2.4). The speed of sound and the bulk modulus in Table 3 are also unaffected by an increasingµn for the
same reason, whereas the compression modulus in Table 3 increases by a factor of µn/2.

7. Conclusion

The recently observed super-Chandrasekharmass thermonuclear supernovae [1–4] suggest the existence of white dwarf
progenitor stars with masses above the Chandrasekhar limit of 1.44 M⊙. We have found a thermal equation of state for
the ultra-relativistic electron gas in high-mass white dwarfs which takes account of the permeability of the ionized stellar
matter constituting the neutralizing background of the electron plasma. The ionizedmedium ismanifested by a permeability
tensor in the electronic Dirac equation leading to a nonlinear dispersion relation E ∼ m(p/m)η/(ε0µ0) for ultra-relativistic
electrons, in contrast to the linear vacuum relation E ∼ p, see Section 2.1. The power-law index η and the product ε0µ0 of
the permeability amplitudes are determined empirically.

In the zero-temperature limit, the equation of state of the ultra-relativistic degenerate plasma pervading the dispersive
mediumadmits a polytropic form, P = Kρ1+η/3, where ρ is the stellarmass density proportional to the electron densityN/V ,
η is the power-law exponent of the electronic dispersion relation, and the proportionality constant is inversely proportional
to the product of the permeability amplitudes, K ∝ 1/(ε0µ0), cf. (5.3). As the equation of state is polytropic, the stellar
structure equations can be reduced to a Lane–Emden equation, which admits stable solutions leading to a genuine mass–
radius relation for dispersion indices in the interval 1 < η < 3, see (5.10) and (5.11). In contrast, constant (vacuum)
permeabilities result in a linear ultra-relativistic dispersion relation (with η = 1), and the mass–radius relation degenerates
into a limit mass.

In Section 6, we employed the dispersive mass–radius relation (5.11) together with mass and radius estimates of two
high-mass white dwarfs, Sirius B and LHS 4033, cf. Table 1, to infer the scaling exponent η = 1.240 and the product
ε0µ0 = 4.85/µ1+η/3

n of the permeability amplitudes defining the ultra-relativistic electronic dispersion relation (2.4); µn is
the nucleon–electron ratio. By specifying these constants in the mass–radius relation (5.11) and using estimates of the mass
ejecta of the super-Chandrasekhar mass Type Ia supernovae SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc, we obtained
estimates of the radii of their white dwarf progenitors, cf. Table 1. We also found estimates of the sound velocity in the
progenitor stars, as well as of their central mass density, Fermi temperature and bulk and compression moduli, cf. Tables 1–
3. In the case of supernova SN 2009dc, the mass of the progenitor star is about 2.8M⊙, almost twice the Chandrasekhar limit
mass, and the central density is reaching the neutron drip density ρdrip/ρ⊙ = 3.05 × 1011, cf. Table 1.

In Sections 5 and 6, we considered a totally degenerate dispersive electron gas at zero temperature, which suffices to
derive the mass–radius relation of high-mass white dwarfs above the Chandrasekhar mass limit. In Sections 3 and 4, we
discussed the effect of nonlinear electron dispersion in the nearly degenerate ultra-relativistic regime. We derived the low-
temperature high-density fugacity expansions of the thermodynamic variables, in particular their dependence on the scaling
exponent η of the electronic dispersion relation, and demonstrated the mechanical and thermal stability, κT > κS > 0 and
CP > CV > 0, of an ultra-relativistic low-temperature plasma in a dispersive medium.
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