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Abstract The singular isobaric heat capacity CP(T, P) of nitrogen, methane, water and hydrogen at critical pressure Pc is studied
over an extended temperature range, from the melting point to the high-temperature cutoff of the experimental data sets. The high-
and low-temperature branches (above and below the critical temperature Tc) of CP(T, Pc) can accurately be modeled with broken
power-law distributions in which the calculated universal scaling exponent 1 − 1/δ of the isobaric heat capacity at critical pressure
is implemented. (The enumerated fluids admit 3D Ising critical exponents). The parameters of these distributions are inferred by
nonlinear least-squares regression from high-precision data sets. In each case, a non-perturbative analytic expression for CP(T, Pc)
is obtained. The broken power laws have closed-form Index functions representing the Log–Log slope of the regressed branches of
CP(T, Pc). These Index functions quantify the crossover from the experimentally more accessible high- and low-temperature regimes
to the critical scaling regime. Ideal power-law scaling (without perturbative corrections and discounting impurities and gravitational
rounding effects) of CP(T, Pc) occurs in a narrow interval, typically within |T/Tc − 1| < 10−4 or even 10−5 depending on the fluid,
and the regressed broken power-law densities provide closed-form analytic extensions of CP(T, Pc) to the melting point and up to
dissociation temperatures.

1 Introduction

The topic of this paper is the global analytic modeling of thermodynamic functions with critical-point singularities. Specifically,
we will calculate the heat capacity at constant pressure along the critical isobar of nitrogen, methane, water and hydrogen. Non-
perturbative closed-form expressions will be obtained for the high- and low-temperature heat-capacity branches of the mentioned
fluids, by combining least-squares regression (from data sets outside the ideal power-law scaling regime) with the critical scaling
predicted by renormalization-group theory [1].

Empirical heat-capacity data for a variety of pure component fluids, stretching from the melting point up to dissociation tem-
peratures, are available in machine-readable synthetic form [2, 3], derived from multiparameter equations of state (EoSs), cf., e.g.,
Refs. [4–7]. These EoSs were in turn regressed from a collection of experimental data covering several temperature and pressure
intervals, usually well separated from the critical point and outside the two-phase region. Experimental data in the critical scaling
regime are only available for a limited number of single-component fluids and mixtures and a limited number of thermodynamic
variables such as the isochoric heat capacity or isothermal compressibility [8–19]. As for the latter two, simple power-law scaling is
typically observed in an interval of width |T/Tc − 1| < 10−2 or 10−3. At temperatures within |T/Tc − 1| < 10−4, a gravitationally
generated density gradient causes deviations from power-law scaling, resulting in a rounding of the straight Log–Log slopes, unless
the experiments are done at zero gravity, cf., e.g., Refs. [20–23]. The easy availability of extended data sets makes it attractive to
model thermodynamic functions with critical singularities empirically and globally without the use of perturbative expansions, by
employing calculated universal scaling properties such as critical exponents and universal amplitude ratios in the vicinity of the
critical point where data points are lacking.

In the case of the isobaric heat capacity at critical pressure CP(T, Pc), there are virtually no experimental data available in the
ideal power-law scaling regime, where critical scaling theory predicts CP(T, Pc) ∼ A±|1 − T/Tc|1/δ−1, cf. Refs. [24, 25], due to
the emergence of long-range correlations as exemplified in Refs. [23, 26]. The ± subscripts of the amplitude refer to the T > Tc

and T < Tc branches of CP(T, Pc), respectively. Nitrogen, methane, water and hydrogen are fluids of the 3D Ising universality class
[1], with exponent 1 − 1/δ � 0.7912, cf., e.g., Ref. [27].

Synthetic precision data for the isobaric heat capacity at critical pressure are available for the mentioned fluids outside the interval
|T/Tc − 1| < 10−3, cf. Refs. [2, 3]. We will demonstrate that the Log–Log slope of the critical heat capacity curve CP(T, Pc) in
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the empirical temperature range |T/Tc − 1| > 10−3 does not exceed 0.7 for any of these fluids. This value is noticeably below the
calculated Log–Log slope of 1 − 1/δ � 0.7912 in the critical power-law scaling regime of the 3D Ising class. The purpose of this
paper is to extend the experimental data range to the ideal power-law scaling regime by means of the calculated scaling exponent
1 − 1/δ. To this end, we will use multiply broken power-law densities [28, 29] to model the high- and low-temperature branches of
the isobaric heat capacity at critical pressure. These densities are very adaptable and especially suitable for large data sets stretching
over several logarithmic decades (in reduced temperature |T/Tc − 1| in this case), being composed as multiple products of simple
power laws [30–34] and generalized beta distributions [35, 36]. The regressed densities cover the experimental data range from the
melting point upward, as well as the critical scaling regime where they admit the above stated power-law asymptotics with calculated
exponent 1 − 1/δ � 0.7912.

In Sect. 2, we discuss the temperature evolution of the isobaric heat capacity of nitrogen at critical pressure, of methane in Sect. 3,
of water in Sect. 4 and of the quantum fluid hydrogen in Sect. 5. In each section, we give an overview of the available experimental
data [2, 3], which clearly indicate the singularity of CP(T, Pc), even though the data sets are still far off the critical power-law scaling
regime. The broken power-law densities used for the high- and low-temperature CP(T, Pc) branches of these fluids (and of CO2

studied in Ref. [37]) are similarly structured as finite products of power-law factors; the nonlinear least-squares regression of these
multiparameter distributions is outlined in Appendix 1.

In Sects. 2, 3, 4, 5, we also study Index functions describing the evolution of the Log–Log slope of the regressed heat-capacity
branches over the temperature range covered, cf., e.g., Refs. [30, 35, 38–41], from the experimental low- and high-temperature

Fig. 1 Isobaric heat capacity of nitrogen at critical pressure. Data points from Refs. [2, 3] (which are synthetic data based on a multiparameter EoS [4])
covering the low-temperature interval from the melting point Tmelt � 63.15 K to 125.6 K (155 data points, filled squares) and the high-temperature range
from 126.8 K up to 2000 K (460 data points, open squares). The critical temperature of nitrogen is Tc � 126.19 K. Depicted is a Log–Log (decadic
double-logarithmic) plot of the isobaric N2 heat capacity CP(t) (at the critical pressure of Pc � 3.3958 MPa) versus reduced temperature t � T/Tc. The
lower and upper temperature limits are indicated by the vertical green and red dotted lines. The red and green solid curves show least-squares fits to the
depicted heat-capacity data. The least-squares regression of the critical heat capacity is performed with the multiply broken power-law densities CP(τ ) in
(2.1) (high-temperature branch, τ � 1/(t − 1), t > 1, red solid curve) and (2.5) (low-temperature branch, τ � 1/(1 − t), t < 1, green solid curve) and fitting
parameters in Table 2

Table 1 Critical constants
(temperature Tc, molar density ρc,
molar volume Vc, pressure Pc)
and melting point Tmelt of
nitrogen, methane, water and
hydrogen, cf. Refs. [2, 3]

Tc[K] ρc[mol/cm3] Vc[cm3/mol] Pc[MPa] Tmelt[K]

Nitrogen 126.19 0.011184 89.414 3.3958 63.15

Methane 190.56 0.010139 98.629 4.5992 90.694

Water 647.10 0.017868 55.9669 22.064 273.16

Hydrogen 33.145 0.015508 64.4828 1.2964 13.957
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Fig. 2 Isobaric heat capacity CP(τ ) of nitrogen at critical pressure, parametrized with the scaling variable τ � 1/|T/Tc − 1|. The open and filled squares
are data points from Refs. [2, 3], the same as depicted in Fig. 1. In the high-temperature regime, T/Tc > 1, the scaling variable is τ � 1/(T/Tc − 1), and
the data points are depicted as open squares. In the low-temperature regime, T/Tc < 1, the scaling variable is τ � 1/(1 − T/Tc), and the data points are
plotted as filled squares. In this τ parametrization, the critical temperature is mapped to infinity, τ (Tc) � ∞. The red and green solid curves are the high-
and low-temperature heat capacities CP(τ ) in (2.1) (for T > Tc) and (2.5) (for T < Tc) regressed from the depicted data sets, cf. Table 2 and Sect. 2. The
χ2 functional used for the regression is stated in Appendix 1; residuals of the least-squares fits of the high- and low-temperature heat-capacity branches are
shown in the lower panels. The red and green dashed lines depicting the critical power-law scaling, cf. (2.2) and (2.6), are the asymptotes of the high- and
low-temperature heat capacities CP(τ ) in (2.1) and (2.5). These straight lines have a Log–Log slope of 1 − 1/δ � 0.7912, which is the critical exponent of
the isobaric heat capacity at critical pressure (of a fluid in the 3D Ising universality class)

regions into the critical scaling regime, where the Index functions reach a constant limit, which is the scaling exponent 1 − 1/δ of
CP(T, Pc). By plotting these Index functions, one can thus obtain a quantitative depiction of the crossover from the high- and low-
temperature regimes to the critical scaling regime. In particular, the temperature interval can be estimated in which ideal power-law
scaling without perturbative scaling corrections occurs. In Sect. 6, we present our conclusions.
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Table 2 Fitting parameters of the high-temperature (T > Tc) and low-temperature (Tmelt ≤ T ≤ Tc) branches of the isobaric heat capacity at critical
pressure Pc (cf. Table 1) of nitrogen, methane, water and hydrogen. The nonlinear least-squares regression is explained in Appendix 1. The multiply
broken power-law density CP(τ ) for the high-temperature heat-capacity branch of nitrogen (column labeled (N2, T > Tc)) reads, cf. (2.1), CP(τ ) �
a0τα0 (1+(τ/b1)β1/η1 )−η1 (1+(τ/b2)β2/η2 )η2 (1+(τ/b3)β3/η3 )η3 . The nitrogen heat capacity at low temperature (column labeled (N2, T < Tc)) as well as the
methane and water heat-capacity branches at high and low temperature (columns labeled (CH4,T > Tc), (CH4,T < Tc), (H2O,T > Tc) and (H2O,T < Tc))
are modeled with the broken power law (2.5),CP(τ ) � a0τα0 (1+(τ/b1)β1/η1 )η1 (1+(τ/b2)β2/η2 )η2 . The broken power-law density (5.1) is used for the high-
temperature heat-capacity branch of hydrogen (column labeled (H2,T > Tc)), CP(τ ) � a0τα0 (1 + (τ/b1)β1/η1 )η1 (1 + (τ/b2)β2/η2 )−η2 (1 + (τ/b3)β3/η3 )η3 .
The regression of the low-temperature heat capacity of hydrogen at critical pressure (column labeled (H2,T < Tc)) is based on the broken power law
(5.4), CP(τ ) � a0τα0 (1 + (τ/b1)β1/η1 )−η1 (1 + (τ/b2)β2/η2 )η2 . The broken power laws representing the heat-capacity branches are parametrized with the
reciprocal reduced temperature τ � 1/|T/Tc − 1|. The least-squares functional used for the regression is stated in (7.6). The data points and the regressed
high- and low-temperature heat-capacity branches of nitrogen, methane, water and hydrogen are depicted in Figs. 2, 7, 12 and 17. The fitting parameters
a0[J/(mol K)], α0, (bk , βk , ηk ) of the enumerated broken power laws for the respective branches are listed in this table. Log bk denotes the decadic logarithm
of the amplitude bk , and the amplitude a0 is in units of J/(mol K); all other parameters are dimensionless. Also recorded are the minimum of the least-squares
functional χ2, cf. (7.6), and the degrees of freedom of the fit (dof: number N of data points minus number of fitting parameters). The scaling amplitudes
A±[J/(mol K)] of the critical power laws CP ∼ A+τ1−1/δ (for the T > Tc branch) and CP ∼ A−τ1−1/δ (for the T < Tc branch) are recorded as well.
The high- and low-temperature Index curves depicting the Log–Log slope of the critical isobaric heat capacities of nitrogen, methane, water and hydrogen
in Figs. 3, 8, 13 and 18, respectively, are also defined by the listed parameters α0, (bk , βk , ηk )

N2
T > Tc

N2
T < Tc

CH4
T > Tc

CH4
T < Tc

H2O
T > Tc

H2O
T < Tc

H2
T > Tc

H2
T < Tc

a0 22.447 52.4257 11.386 30.8915 42.6894 53.5908 0.0472032 8.86136

α0 0 0 – 0.871198 – 0.163861 – 0.210519 – 0.183353 – 1.16706 1.56356

Log b1 – 1.00831 0.642916 0.00309785 0.53092 0.396351 1.32592 – 0.348863 0.15801

β1 2.13323 0.24178 0.407557 0.0366199 0.81205 0.873875 1.57159 1.14123

η1 2.59506 0.0930221 0.164089 0.0121522 0.492865 1.71863 0.708337 0.451042

Log b2 – 0.600829 1.88152 0.324151 1.13446 2.76044 0.427767 – 0.556404 1.71538

β2 0.244735 0.54942 1.25484 0.918441 0.189669 0.100678 3.78186 0.368862

η2 0.0604001 0.713683 2.32862 1.95710 0.259185 0.0187018 2.83381 0.379259

Log b3 – 0.487555 – – – – – – 0.832377 –

β3 2.67969 – – – – – 4.16853 –

η3 5.18180 – – – – – 7.38708 –

χ2 6.32 × 10−4 4.89 × 10−4 4.97 × 10−5 1.74 × 10−6 1.17 × 10−4 4.95 × 10−4 3.60 × 10−5 2.04 × 10−5

dof 460 – 10 155 – 7 366 – 7 197 – 7 280 – 7 183 – 7 398 – 10 92 – 7

A± 4.50556 3.3912 4.4499 2.68204 6.09386 3.3677 3.87064 3.12671

2 Isobaric heat capacity of nitrogen at critical pressure

As a first orientation, synthetic experimental data for the isobaric heat capacity CP of nitrogen, cf. Refs. [2, 3], are plotted in Fig. 1,
at critical pressure Pc � 3.3958 MPa. Figure 1 shows a Log–Log plot of CP data against reduced temperature t � T/Tc, from the
melting point at Tmelt � 63.15 K up to 125.6 K and from 126.8 K up to 2000 K. (Log denotes the decadic logarithm.) The critical
temperature of nitrogen is Tc � 126.19 K. Critical point parameters are denoted by (Tc, Pc, ρc, Vc), where ρ is the molar density
and V � 1/ρ the molar volume, cf. Table 1. Despite the pronounced singularity in Fig. 1, the indicated temperature ranges are still
by about two orders separated from the scaling regime, where CP ∼ A±|1 − T/Tc|1/δ−1 with critical exponent δ � 4.7898, cf. Ref.
[27]. The ± subscripts refer to temperatures above and below Tc. That is, CP ∼ A+(t − 1)1/δ−1 for t > 1 and CP ∼ A−(1 − t)1/δ−1

for t < 1.
To model the crossover from the empirical data in Fig. 1 to the scaling regime, we parametrize the heat capacity with the scaling

variable τ � 1/|t − 1|, t � T/Tc, writing CP(τ ) and splitting the temperature range into a low-temperature interval [Tmelt, Tc]
between melting point and Tc and a high-temperature interval above Tc. Thus, in the low-temperature interval, the scaling variable is
τ � 1/(1 − t), τ > 1/(1 − Tmelt/Tc). In the high-temperature interval, τ � 1/(t − 1), τ > 0. In either case, the critical temperature
Tc corresponds to τ � ∞. Figure 2 shows Log–Log plots of the isobaric heat-capacity data (the same as in Fig. 1) as a function
of τ instead of reduced temperature t � T/Tc. The low-temperature (T < Tc) data points are depicted as filled squares and the
high-temperature (T > Tc) data as open squares, covering the same temperature range as in Fig. 1.

2.1 High-temperature regime above the critical temperature

The data set (τi ,CP,i ), τi � 1/(Ti/Tc − 1), in the high-temperature regime (T > Tc) comprises 460 data points in the interval
between 126.8 K and 2000 K (open squares in Fig. 2, taken from Refs. [2, 3]).
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Fig. 3 Index functions of the critical isobaric heat capacity of nitrogen, parametrized with scaling variable τ � 1/|T/Tc − 1|. The red and green solid curves
show the Log–Log slope Index[CP(τ )] :� d logCP(τ )/d log τ of the high- and low-temperature heat-capacity branches CP(τ ) of nitrogen, cf. Section 2.
Log–Log plots of CP(τ ), cf. (2.1) (for T > Tc) and (2.5) (for T < Tc), are depicted in Fig. 2 as red and green solid curves. The plotted Index functions
Index[CP(τ )] are stated in (2.4) (red solid curve, τ � 1/(T/Tc − 1), T > Tc) and (2.7) (green solid curve, τ � 1/(1 − T/Tc), T < Tc) with parameters in
Table 2. The open squares on the (red solid) high-temperature (T > Tc) Index curve and the filled squares on the (green solid) low-temperature (T < Tc)
Index curve correspond to the heat-capacity data points depicted in Fig. 2. The vertical red and green dotted lines indicate the same temperature intervals as
in Fig. 2. The scaling exponent 1 − 1/δ � 0.7912 of the heat capacity is indicated by the black dashed horizontal line, which is the asymptote of the depicted
Index curves (i.e., the constant τ → ∞ limit of Index[CP(τ )] in (2.4) and (2.7)). This horizontal line is also a plot of the constant Index function (Log–Log
slope) of the asymptotes of the heat-capacity branches CP(τ ) in Fig. 2 (red and green dashed straight lines in Fig. 2, depicting the asymptotic power laws
(2.2) and (2.6) of the isobaric heat capacity at critical pressure)

The least-squares fit above Tc is performed with the multiply broken power law, cf. Refs. [28, 29, 37],

CP(τ ) � a0τ
α0

1

(1 + (τ/b1)β1/η1 )η1
(1 + (τ/b2)β2/η2 )η2 (1 + (τ/b3)β3/η3 )η3 , (2.1)

with positive amplitudes a0, bk , positive exponents βk , ηk , and real exponent α0 as parameters.
The asymptotic limit of (2.1) is CP(τ → ∞) ∼ A+τ 1−1/δ , with exponent and amplitude

1 − 1/δ � α0 − β1 + β2 + β3, A+ � a0b
β1
1 /(bβ2

2 bβ3
3 ). (2.2)

We can use the scaling exponent 1 − 1/δ � 0.7912 and the first equation in (2.2) to eliminate the parameter β3 in CP(τ ).
The least-squares regression of CP(τ ) is explained in Appendix 1 and is based on supercritical data points (τi ,CP,i )i�1,...,N ,

N � 460, referenced above. The fitting parameters a0 ,α0 and (bk, βk, ηk)k�1,2,3 are recorded in Table 2, including the amplitude
A+ in (2.2). (The decadic logarithm Log bk rather than the amplitude bk is listed in this table.) The regressed high-temperature
component (2.1) of the isobaric heat capacity CP(τ ) is depicted in Fig. 2 as red solid curve.

In Fig. 1, the isobaric heat capacity is parametrized with reduced temperature t � T/Tc. The red solid curve in this figure is the
high-temperature CP(τ ) in (2.1) with τ � 1/(t − 1) substituted (shortcut CP(t)).

Figure 3 depicts the Index function, cf., e.g., Refs. [30, 35, 38–41],

Index[CP(τ )] :� C ′
P(τ )

CP(τ )
τ � d logCP(τ )

d log τ
, (2.3)

i.e., the Log–Log slope (red solid curve) of the regressed high-temperature heat capacity CP(τ ) in (2.1),

Index[CP(τ )] � α0 − β1
(τ/b1)β1/η1

1 + (τ/b1)β1/η1
+ β2

(τ/b2)β2/η2

1 + (τ/b2)β2/η2
+ β3

(τ/b3)β3/η3

1 + (τ/b3)β3/η3
. (2.4)

To better relate Figs. 2 and 3, we have plotted data points (τi , Index[CP(τi )])i�1,...,N (open squares) on the Index curve, using
the abscissas τi of the data points (τi ,CP,i )i�1,...,N in Fig. 2 (also indicated by open squares).

123



  457 Page 6 of 23 Eur. Phys. J. Plus         (2023) 138:457 

Fig. 4 Isobaric heat capacityCP(τ̂ ) of nitrogen at critical pressure, parametrized with reduced temperature τ̂ � |T/Tc − 1|. Apart from this reparametrization,
the caption of Fig. 2 is applicable. In this τ̂ parametrization, the critical temperature is mapped to zero. The red and green solid curves show the high- and
low-temperature heat-capacity branches CP(τ � 1/τ̂ ) in (2.1) (for T > Tc) and (2.5) (for T < Tc) regressed from the depicted data sets, cf. Section 2 and
Table 2. The residuals of the least-squares fits of the high- and low-temperature branches are shown in the lower panels, indicating deviations of less than
one percent throughout the data range. The red and green dashed lines depicting the critical power laws CP(τ̂ → 0) ∼ A±τ̂1/δ−1, cf. (2.2) and (2.6), are
the asymptotes of the high- and low-temperature branches of CP(τ̂ )

2.2 Low-temperature interval between melting point and critical temperature

The data set (τi ,CP,i ) used for the regression of the isobaric heat capacity CP(τ ) at critical pressure in the subcritical interval
[Tmelt, Tc] comprises 155 data points between Tmelt � 63.15 K and 125.6 K (filled squares in Fig. 2, taken from Refs. [2, 3]).

The least-squares fit of the low-temperature branch of CP(τ ) is performed with the broken power law

CP(τ ) � a0τ
α0 (1 + (τ/b1)β1/η1 )η1 (1 + (τ/b2)β2/η2 )η2 . (2.5)

123
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Fig. 5 Index functions of the isobaric heat capacity of nitrogen at critical pressure, parametrized with reduced temperature τ̂ � |T/Tc − 1|. The red and
green solid curves depict the Log–Log slope Index[CP(τ � 1/τ̂ )] � −Index[CP(τ )]|τ�1/τ̂ of the high- and low-temperature branches of the nitrogen heat
capacity CP(τ̂ ) in Fig. 4, cf. (2.1), (2.5). The Index functions are stated in (2.4) and (2.7), subject to the substitution τ � 1/τ̂ and an overall sign change as
indicated. The open squares on the (red solid) high-temperature (T > Tc) Index curve and the filled squares on the (green solid) low-temperature (T < Tc)
Index curve correspond to the heat-capacity data points in Fig. 4. The scaling exponent 1 − 1/δ � 0.7912 of the isobaric heat capacity at critical pressure is
indicated by the black dashed horizontal line, which is the asymptote of the depicted Index curves. This horizontal line is also a plot of the constant Index
function (Log–Log slope) of the critical power laws A±τ̂1/δ−1 asymptotic to the high- and low-temperature branches of CP(τ̂ ) in Fig. 4. (These asymptotes
are depicted as red and green dashed straight lines in Fig. 4)

The amplitudes a0, bk and exponents βk , ηk are positive, and the exponent α0 is real. The asymptotic power-law scaling of CP(τ )
in (2.5) reads CP(τ → ∞) ∼ A−τ 1−1/δ , with

1 − 1/δ � α0 + β1 + β2, A− � a0/(bβ1
1 bβ2

2 ). (2.6)

The exponent β2 in (2.5) can be eliminated via the first identity in (2.6), using the calculated scaling exponent 1 − 1/δ � 0.7912.
The least-squares regression of CP(τ ) in (2.5) is analogous to the regression of the high-temperature component of the heat

capacity in Sect. 2.1, based on the subcritical data set (τi ,CP,i )i�1,...,N , τi � 1/(1 − ti ), N � 155, referenced above. The fitting
parameters a0, α0, (bk, βk, ηk)k�1,2 are listed in Table 2, as well as the amplitude A− in (2.6). The regressed CP(τ ) is shown in
Fig. 2 as green solid curve. The red and green straight lines in Fig. 2 depict the asymptotic power-law scaling CP ∼ A±τ 1−1/δ . In
Fig. 1, CP(τ � 1/(1 − t)) is plotted as a function of reduced temperature t � T/Tc < 1 (green solid curve in Fig. 1).

The Index function of the low-temperature heat capacity CP(τ ) in (2.5) is depicted in Fig. 3 as green solid curve,

Index[CP(τ )] � α0 + β1
(τ/b1)β1/η1

1 + (τ/b1)β1/η1
+ β2

(τ/b2)β2/η2

1 + (τ/b2)β2/η2
, (2.7)

which is the Log–Log slope of the low-temperature branch of the heat capacity CP(τ ) in Fig. 2. Along the Index curve in Fig. 3,
we have indicated data points (τi , Index[CP(τi )])i�1,...,N (filled squares) with the same abscissas as the low-temperature points
(τi ,CP,i )i�1,...,N in Fig. 2.

Outside the interval [125.6 K, 126.8 K], the Index functions in Fig. 3 do not exceed 0.7. The complement of this interval is
covered by the open and filled squares in Figs. 2 and 3, representing synthetic data sets of the critical isobaric N2 heat capacity from
Refs. [2, 3]. The slope of 1 − 1/δ � 0.7912 exhibiting the critical power-law scaling of the isobaric heat capacity is only reached
for temperatures extremely close to Tc � 126.19 K, |T/Tc − 1| < 10−5, see Fig. 3 (where Tc corresponds to τ � ∞), far outside
the temperature range of the empirical data.

Figure 4 shows the heat-capacity branchesCP(τ̂ ) in reduced-temperature parametrization, τ̂ � |t − 1|, t � T/Tc, and is otherwise
analogous to Fig. 2. The red and green straight lines in Fig. 4 depict the asymptotic power-law scaling CP ∼ A±τ̂ 1/δ−1. The Index
curves Index[CP(τ̂ )] of the high- and low-temperature heat-capacity branches in reduced-temperature parametrization are plotted
in Fig. 5.
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Fig. 6 Isobaric heat capacity of methane at critical pressure. Data points from Refs. [2, 3] (which are synthetic data based on a multiparameter EoS [5]),
covering the low-temperature interval from the melting point Tmelt � 90.694 K up to 190 K (197 data points, filled squares) and the high-temperature
range from 191.5 K to 625 K (366 data points, open squares). The critical temperature of methane is Tc � 190.56 K. Depicted is a Log–Log (decadic
double-logarithmic) plot of the isobaric CH4 heat capacity CP(t) (at the critical pressure of Pc � 4.5992 MPa) in reduced temperature t � T/Tc. The lower
and upper temperature limits are indicated by the vertical green and red dotted lines. The red and green solid curves show least-squares fits to the depicted
heat-capacity data. Both the high-temperature branch (t > 1, red solid curve) and low-temperature branch (Tmelt/Tc < t < 1, green solid curve) of the heat
capacity are modeled with the broken power-law density CP(τ ) in (2.5), with τ � 1/|t − 1| substituted, cf. Section 3. The fitting parameters of the high-
and low-temperature branches of the critical isobaric CH4 heat capacity are recorded in Table 2

3 Critical isobaric heat capacity of methane

The reasoning in this section and Sect. 4 (heat capacity of water) is quite analogous to the discussion of the nitrogen heat capacity
in Sect. 2. Experimental data for the isobaric heat capacity of methane, cf. Refs. [2, 3], are plotted in Fig. 6, at critical pressure
Pc � 4.5992 MPa. Figure 6 shows a Log–Log plot of CP data against reduced temperature t � T/Tc, from the melting point at
Tmelt � 90.694 K up to 190 K and from 191.5 K up to 625 K. The critical temperature of methane is Tc � 190.56 K, cf. Table 1.

To model the crossover from the empirical data in Fig. 6 to the scaling regime (where CP ∼ A±|1 − T/Tc|1/δ−1 and 1 − 1/δ �
0.7912), we parametrize the heat capacity with the scaling variable τ � 1/|t − 1|, t � T/Tc. Figure 7 shows Log–Log plots of
the isobaric heat-capacity data as a function of τ . The low-temperature (T < Tc) data points are depicted as filled squares and the
high-temperature (T > Tc) data as open squares, covering the same temperature range as in Fig. 6.

3.1 Heat capacity as broken power law: high-temperature interval from Tc up to 625 K

The data set (τi ,CP,i ), τi � 1/(Ti/Tc − 1), used for regression in the high-temperature regime (T > Tc) comprises 366 data points
in the interval between 191.5 K and 625 K (open squares in Fig. 7, cf. Refs. [2, 3]).

The least-squares fit above Tc is performed with the broken power law CP(τ ) already stated in (2.5), with positive amplitudes
a0, bk , positive exponents βk , ηk , and real exponent α0 as parameters. The asymptotic limit of the broken power law (2.5) is
CP(τ → ∞) ∼ A+τ 1−1/δ , with exponent 1 − 1/δ � α0 + β1 + β2 and amplitude A+ � a0/(bβ1

1 bβ2
2 ), cf. (2.6). We use the scaling

exponent 1 − 1/δ � 0.7912 and eliminate the exponent β2 of CP(τ ) in (2.5) by substituting β2 � 0.7912 − α0 − β1.
The least-squares regression ofCP(τ ) in (2.5) (with the indicated constraints) is based on supercritical data points (τi ,CP,i )i�1,...,N ,

N � 366, referenced above. The fitting parameters a0 ,α0, (bk, βk, ηk)k�1,2 are recorded in Table 2. The regressed high-temperature
branch (2.5) of the isobaric heat capacity CP(τ ) of methane is depicted in Fig. 7 as red solid curve.

In Fig. 6, the isobaric heat capacity is parametrized with reduced temperature t � T/Tc. The red solid curve in this figure is the
regressed high-temperature CP(τ ) in (2.5) and Table 2 with τ � 1/(t − 1) substituted (shortcut CP(t)). The data points in Figs. 6
and 7 are identical.
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Fig. 7 Isobaric heat capacity CP(τ ) of methane at critical pressure, parametrized with the scaling variable τ � 1/|T/Tc − 1|. The open and filled squares are
data points from Refs. [2, 3], the same as depicted in Fig. 6. In the high-temperature regime, T/Tc > 1, the scaling variable is τ � 1/(T/Tc −1), and the data
points are depicted as open squares. In the low-temperature regime, T/Tc < 1, the scaling variable is τ � 1/(1 − T/Tc), and the data points are shown as
filled squares. The red and green solid curves are the high- and low-temperature heat capacities CP(τ ) in (2.5) (for T > Tc and Tmelt < T < Tc, respectively)
regressed from the depicted data sets, cf. Table 2. The χ2 functional used for the regression is stated in (7.6), and the residuals of the least-squares fits of
the high- and low-temperature branches of the CH4 heat capacity are shown in the lower panels. The red and green dashed lines are the asymptotes of the
high- and low-temperature branches (red and green solid curves), cf. Section 3. These straight lines depict simple power laws and have a Log–Log slope of
1 − 1/δ � 0.7912 coinciding with the scaling exponent of the critical isobaric heat capacity

Figure 8 shows the Index function (2.7), i.e., the Log–Log slope (red solid curve) of the regressed high-temperature heat capacity
CP(τ ) of methane. To relate Figs. 7 and 8, we have plotted data points (τi , Index[CP(τi )])i�1,...,N (open squares) on the Index curve,
using the abscissas τi of the data points (τi ,CP,i )i�1,...,N in Fig. 7.

3.2 Regression of the heat capacity in the interval [Tmelt, Tc]

The data set (τi ,CP,i ) used for the regression of the isobaric heat capacity CP(τ ) at critical pressure in the subcritical interval
[Tmelt, Tc] comprises 197 data points between Tmelt � 90.694 K and 190 K (filled squares in Fig. 7, from Refs. [2, 3]).
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Fig. 8 Index functions of the critical isobaric heat capacity of methane, parametrized with scaling variable τ � 1/|T/Tc − 1|. The red and green solid
curves show the Log–Log slope Index[CP(τ )] � d logCP(τ )/d log τ of the high- and low-temperature heat-capacity branches CP(τ ) of methane at critical
pressure, cf. Section 3. Log–Log plots of the high- and low-temperature branches, cf. (2.5), are depicted in Fig. 7 as red and green solid curves (for T > Tc
and T < Tc), respectively. The Index functions Index[CP(τ )] are stated in (2.7) and plotted here as red solid curve (with τ � 1/(T/Tc − 1), T > Tc) and
green solid curve (with τ � 1/(1 − T/Tc), T < Tc). The parameters of the high- and low-temperature CH4 Index functions (2.7) are recorded in Table 2.
The open squares along the (red solid) high-temperature Index curve and the filled squares along the (green solid) low-temperature Index curve correspond
to the heat-capacity data points in Fig. 7. The vertical red and green dotted lines indicate the same temperature intervals as in Fig. 7. The scaling exponent
1 − 1/δ � 0.7912 of the critical isobaric heat capacity is indicated by the black dashed horizontal line, which is the asymptote of the depicted Index curves
(i.e., the constant τ → ∞ limit of Index[CP(τ )] in (2.7)). This horizontal line is also a plot of the constant Index function (Log–Log slope) of the asymptotes
of the high- and low-temperature branches of CP(τ ), depicted as red and green dashed straight lines in Fig. 7

The least-squares fit of the low-temperature branch of CP(τ ) is also performed with the broken power law CP(τ ) (2.5), subject
to the constraints (2.6). The exponent β2 of CP(τ ) is eliminated by way of the first identity in (2.6). The least-squares regression
of CP(τ ) in (2.5) is based on subcritical data points (τi ,CP,i )i�1,...,N , N � 197, referenced above. The fitting parameters a0,α0,
(bk, βk, ηk)k�1,2 and the amplitude A− in (2.6) are recorded in Table 2. The regressed low-temperature (T < Tc) heat capacity
CP(τ ) of methane is shown in Fig. 7 as green solid curve. The red and green straight lines in Fig. 7 depict the asymptotic power-law
scaling CP ∼ A±τ 1−1/δ of the high- and low-temperature branches of the isobaric heat capacity. In Fig. 6, CP(τ � 1/(1 − t)) is
plotted as a function of reduced temperature t � T/Tc < 1 (shortcut CP(t), green solid curve in Fig. 6).

The Index function (2.7) (i.e., Log–Log slope) of the low-temperature heat capacity CP(τ ) in (2.5) and Fig. 7 is depicted in Fig. 8
as green solid curve. On this Index curve in Fig. 8, we have indicated data points (τi , Index[CP(τi )])i�1,...,N (filled squares) with the
same abscissas as the subcritical data points (τi ,CP,i )i�1,...,N in Fig. 7 (also depicted by filled squares).

Outside the interval [190 K, 191.5 K], the Index functions in Fig. 8 do not exceed 0.7. The complement of this interval is covered
by the open and filled squares in Figs. 7 and 8, representing empirical data sets of the critical isobaric CH4 heat capacity from
Refs. [2, 3]. The Log–Log slope of 1 − 1/δ � 0.7912 defining the critical power-law scaling of the isobaric heat capacity at critical
pressure is only reached for temperatures extremely close to Tc � 190.56 K, in the interval |T/Tc − 1| < 10−5, cf. Fig. 8, far outside
the temperature range of the empirical data of Refs. [2, 3]. Figures 9 and 10 show the high- and low-temperature heat capacities and
their Index functions in reduced-temperature parametrization, τ̂ � |t − 1|, t � T/Tc, and are otherwise analogous to Figs. 7 and 8.
The red and green straight lines in Fig. 9 depict the asymptotic power-law scaling CP ∼ A±τ̂ 1/δ−1.

4 Critical isobaric heat capacity of water

Experimental data for the isobaric heat capacity of water, cf. Refs. [2, 3], are plotted in Fig. 11, at critical pressure of Pc � 22.064 MPa.
Figure 11 shows a Log–Log plot of theCP data sets against reduced temperature t � T/Tc, from the melting point at Tmelt � 273.16 K
up to 646.4 K and from 647.6 K to 1273 K. The critical temperature of water is Tc � 647.10 K, cf. Table 2.
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Fig. 9 Isobaric heat capacityCP(τ̂ ) of methane at critical pressure, parametrized with reduced temperature τ̂ � |T/Tc − 1|. Apart from this reparametrization,
the caption of Fig. 7 applies. The red and green solid curves show the high- and low-temperature heat-capacity branches CP(τ � 1/τ̂ ) in (2.5) and Table 2,
regressed from the depicted data sets, cf. Section 3. The residuals of the least-squares fits of the high- and low-temperature branches of CP(τ̂ ) are shown in
the lower panels, indicating deviations of less than one percent from the data points. The parallel red and green dashed straight lines depicting the critical
power laws CP(τ̂ → 0) ∼ A±τ̂1/δ−1 are the asymptotes of the high- and low-temperature branches of CP(τ̂ )

To model the crossover from the empirical data in Fig. 11 to the scaling regime, we parametrize the heat capacity with the scaling
variable τ � 1/|t − 1|. Figure 12 shows Log–Log plots of the heat-capacity data as a function of τ . The low-temperature (T < Tc)
data points are depicted as filled squares and the high-temperature (T > Tc) data as open squares, covering the same temperature
range as in Fig. 11. Tc in Fig. 11 corresponds to τ � ∞ in Fig. 12.

4.1 Analytic closed-form modeling of the heat capacity at critical pressure: high-temperature regime from Tc to 1270 K

The data set (τi ,CP,i ), τi � 1/(Ti/Tc − 1), in the high-temperature regime (T > Tc) comprises 280 data points in the interval
between 647.6 K and 1273 K (open squares in Fig. 10, cf. Refs. [2, 3]). The least-squares fit above Tc is performed with the broken
power law CP(τ ) in (2.5), with positive amplitudes a0, bk , positive exponents βk , ηk , and real exponent α0 as parameters. The
asymptotic limit of the broken power law (2.5) is CP(τ → ∞) ∼ A+τ 1−1/δ , with exponent 1 − 1/δ � α0 + β1 + β2 and amplitude
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Fig. 10 Index functions of the isobaric heat capacity of methane at critical pressure, parametrized with reduced temperature τ̂ � |T/Tc − 1|. The red and
green solid curves depict the Log–Log slope Index[CP(τ � 1/τ̂ )] � −Index[CP(τ )]|τ�1/τ̂ of the high- and low-temperature branches of the methane heat
capacity CP(τ̂ ) in Fig. 9. The Index functions are defined in (2.7) and Table 2, subject to the substitution τ � 1/τ̂ and an overall sign change as indicated.
The open squares on the high-temperature (T > Tc) Index curve and the filled squares on the low-temperature (T < Tc) Index curve correspond to the data
points depicted in Fig. 9. The scaling exponent 1 − 1/δ � 0.7912 of the isobaric heat capacity at critical pressure is indicated by the black dashed horizontal
line, which is the asymptote of the Index curves. This horizontal line is also a plot of the constant Index function (Log–Log slope) of the critical power laws
A±τ̂1/δ−1 asymptotic to the high- and low-temperature branches of CP(τ̂ ) in Fig. 9. These power laws are depicted as parallel red and green dashed straight
lines in Fig. 9

A+ � a0/(bβ1
1 bβ2

2 ). We use the calculated scaling exponent 1 − 1/δ � 0.7912 and eliminate the exponent β2 in CP(τ ) by way of the
first identity.

The least-squares regression of CP(τ ) in (2.5) is based on supercritical data points (τi ,CP,i )i�1,...,N , N � 280, referenced above.
The fitting parameters a0,α0,(bk, βk, ηk)k�1,2 and the derived asymptotic amplitude A+ are recorded in Table 2. The regressed
high-temperature branch (2.5) of the isobaric heat capacity CP(τ ) of water is depicted in Fig. 12 as red solid curve.

Figure 11 depicts the critical isobaric heat capacity of water parametrized with reduced temperature t � T/Tc. The red solid
curve in this figure shows CP(τ ) in (2.5) with τ � 1/(t − 1) substituted (shortcut CP(t)).

Figure 13 depicts the Index function (2.7) (red solid curve), i.e., the Log–Log slope of the regressed high-temperature heat
capacity CP(τ ) in Fig. 12. To relate Figs. 12 and 13, we have plotted data points (τi , Index[CP(τi )])i�1,...,N (open squares) on the
Index curve, using the abscissas τi of the supercritical data points (τi ,CP,i )i�1,...,N in Fig. 12 (also indicated by open squares).

4.2 Heat capacity in the subcritical interval above the melting point

The data set (τi ,CP,i ) used for the regression of the isobaric heat capacity CP(τ ) at critical pressure in the interval [Tmelt, Tc]
comprises 183 data points between Tmelt � 273.16 K and 646.4 K (filled squares in Fig. 12, from Refs. [2, 3]).

The least-squares fit of the low-temperature (T < Tc) branch of CP(τ ) is performed with the broken power law CP(τ ) in (2.5).
The exponent β2 in CP(τ ) is eliminated via the first equation in (2.6) to obtain the asymptotic power-law scaling CP ∼ A−τ 1−1/δ

with calculated exponent 1 − 1/δ � 0.7912.
The least-squares regression of CP(τ ) in (2.5) is explained in Appendix 1, using the subcritical data points (τi ,CP,i )i�1,...,N ,

N � 183, referenced above. The fitting parameters a0,α0,(bk, βk, ηk)k�1,2 are recorded in Table 2. The regressed low-temperature
branch ofCP(τ ) is shown in Fig. 12 as green solid curve. In Fig. 11,CP(τ � 1/(1− t)) is plotted as a function of reduced temperature
t � T/Tc < 1 (shortcut CP(t), green solid curve). The red and green straight lines in Fig. 12 depict the asymptotic power-law
scaling CP ∼ A±τ 1−1/δ .

The Index function (2.7) of the low-temperature heat capacity CP(τ ) (cf. (2.5) and Table 2) is depicted in Fig. 13 as green solid
curve, which represents the Log–Log slope of the subcritical branch of CP(τ ) in Fig. 12. Along the (green solid) Index curve in
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Fig. 11 Isobaric heat capacity of water at critical pressure. Data points from Refs. [2, 3] (synthetic data based on a multiparameter EoS [6]), covering the
low-temperature interval from the melting point Tmelt � 273.16 K to 646.4 K (183 data points, filled squares) and the high-temperature range from 647.6 K
to 1273 K (280 data points, open squares). The critical temperature of water is Tc � 647.10 K. Depicted is a Log–Log plot of the isobaric heat capacity CP(t)
(at the critical pressure of Pc � 22.064 MPa) versus reduced temperature t � T/Tc. The lower and upper temperature limits are indicated by the vertical
green and red dotted lines. The red and green solid curves show least-squares fits to the depicted heat-capacity data. Both the high-temperature branch (t > 1,
red solid curve) and low-temperature branch (Tmelt/Tc < t < 1, green solid curve) of the heat capacity are modeled with the multiply broken power-law
density CP(τ ) in (2.5), with τ � 1/|t − 1| substituted, cf. Section 4. The fitting parameters of the high- and low-temperature branches of the critical isobaric
heat capacity of water are recorded in Table 2

Fig. 13, we have indicated data points (τi , Index[CP(τi )])i�1,...,N (filled squares) with the same abscissas as the subcritical data
points (τi ,CP,i )i�1,...,N in Fig. 12 (also depicted by filled squares).

Outside the interval [646.4 K, 647.6 K], the Index functions in Fig. 13 do not exceed 0.7. The complement of this interval is
covered by the open and filled squares in Figs. 12 and 13, representing empirical data sets of the isobaric heat capacity of water from
Refs. [2, 3]. The slope of 1 − 1/δ � 0.7912 defining the critical power-law scaling of the isobaric heat capacity at critical pressure
is only reached for temperatures extremely close to Tc � 647.10 K, |T/Tc − 1| < 10−5, see Fig. 13, far outside the temperature
range of the empirical data of Refs. [2, 3]. Figures 14 and 15 show the high- and low-temperature heat-capacity branches and their
Index functions reparametrized with reduced temperature τ̂ � |t − 1|, t � T/Tc. The red and green straight lines in Fig. 14 depict
the asymptotic power-law scaling CP ∼ A±τ̂ 1/δ−1.

5 Hydrogen: critical isobaric heat capacity of a quantum fluid

Synthetic experimental data for the isobaric heat capacity of hydrogen, cf. Refs. [2, 3], are plotted in Fig. 16, at the critical pressure
of Pc � 1.2964 MPa. Figure 16 shows a Log–Log plot of CP data against reduced temperature t � T/Tc, from the melting point at
Tmelt � 13.957 K up to 32.6 K and from 33.8 K to 1000 K. The critical temperature of hydrogen is Tc � 33.145 K, cf. Table 1.

To model the crossover from the empirical data in Fig. 16 to the scaling regime, where CP ∼ A±|1 − T/Tc|1/δ−1 with 1−1/δ �
0.7912, we parametrize the heat capacity with the scaling variable τ � 1/|t − 1|, t � T/Tc. Figure 17 shows Log–Log plots of the
isobaric heat-capacity data as a function of τ instead of reduced temperature. The low-temperature (T < Tc) data points are depicted
as filled squares and the high-temperature (T > Tc) data as open squares, covering the same temperature range as in Fig. 16. Tc in
Fig. 16 is mapped to infinity in Fig. 17.

123



  457 Page 14 of 23 Eur. Phys. J. Plus         (2023) 138:457 

Fig. 12 Isobaric heat capacity CP(τ ) of water at critical pressure, parametrized with the scaling variable τ � 1/|T/Tc − 1|. The open and filled squares are
data points from Refs. [2, 3], the same as depicted in Fig. 11. In the high-temperature regime, T/Tc > 1, the scaling variable is τ � 1/(T/Tc − 1), and the
data points are shown as open squares. In the low-temperature regime, T/Tc < 1, the scaling variable is τ � 1/(1 − T/Tc), and the data points are plotted as
filled squares. In this τ parametrization, the critical temperature is mapped to infinity. The red and green solid curves are the high- and low-temperature heat
capacities CP(τ ) in (2.5) (for T > Tc and Tmelt < T < Tc, respectively) regressed from the depicted data sets, cf. Table 2 and Sect. 4. The χ2 functional
used for the regression is stated in (7.6); residuals of the least-squares fits of the high- and low-temperature heat-capacity branches are shown in the lower
panels. The red and green dashed lines are the asymptotes of the high- and low-temperature branches (red and green solid curves). These straight lines
depicting the critical power laws have a Log–Log slope of 1 − 1/δ � 0.7912, which is the scaling exponent of the isobaric heat capacity at critical pressure

5.1 High-temperature interval from Tc up to 1000 K

The data set (τi ,CP,i ), τi � 1/(Ti/Tc − 1), in the high-temperature regime (T > Tc) comprises 398 data points in the interval
between 33.8 K and 1000 K (open squares in Fig. 17, taken from Refs. [2, 3]). The least-squares fit above Tc is performed with the
multiply broken power law

CP(τ ) � a0τ
α0 (1 + (τ/b1)β1/η1 )η1

1

(1 + (τ/b2)β2/η2 )η2
(1 + (τ/b3)β3/η3 )η3 , (5.1)
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Fig. 13 Index functions of the critical isobaric heat capacity of water, parametrized with scaling variable τ � 1/|T/Tc − 1|. The red and green solid curves
depict the Log–Log slope Index[CP(τ )] � d logCP(τ )/d log τ of the high- and low-temperature heat-capacity branches CP(τ ), cf. Section 4. Log–Log plots
of CP(τ ), cf. (2.5), are shown in Fig. 12 as red solid curve (high-temperature branch, T > Tc) and green solid curve (low-temperature branch, T < Tc).
The Index functions Index[CP(τ )] of the high- and low-temperature branches are stated in (2.7) and plotted here as red solid curve (with τ � 1/(T/Tc − 1),
T > Tc) and green solid curve (with τ � 1/(1−T/Tc), T < Tc). The parameters of the high- and low-temperature Index functions (2.7) are recorded in Table
2. The open squares on the (red solid) high-temperature Index curve and the filled squares on the (green solid) low-temperature Index curve correspond to the
data points in Fig. 12. The vertical red and green dotted lines indicate the same temperature intervals as in Fig. 12. The scaling exponent 1 − 1/δ � 0.7912
of the heat capacity is indicated by the black dashed horizontal line, which is the asymptote of the depicted Index curves (i.e., the constant τ → ∞ limit of
Index[CP(τ )] in (2.7)). This horizontal line is also a plot of the constant Index function (Log–Log slope) of the asymptotes of the high- and low-temperature
branches of CP(τ ), depicted as parallel red and green dashed straight lines in Fig. 12

with positive amplitudes a0, bk , positive exponents βk , ηk , and real exponent α0 as parameters. The asymptotic limit of the broken
power law (5.1) is CP(τ → ∞) ∼ A+τ 1−1/δ , with exponent and amplitude

1 − 1/δ � α0 + β1 − β2 + β3, A+ � a0b
β2
2 /(bβ1

1 bβ3
3 ). (5.2)

The exponentβ3 in (5.1) is eliminated via the first identity in (5.2), using the calculated 3D Ising scaling exponent 1−1/δ � 0.7912.
The least-squares regression of CP(τ ) is explained in Appendix 1 and based on the data points (τi ,CP,i )i�1,...,N , N � 398,

quoted above. The fitting parameters a0,α0,(bk, βk, ηk)k�1,2,3 and the scaling amplitude A+ are recorded in Table 2. The regressed
high-temperature branch (5.1) of the critical isobaric heat capacity CP(τ ) is depicted in Fig. 17 as red solid curve.

In Fig. 16, the isobaric heat capacity at critical pressure is parametrized with reduced temperature t � T/Tc. The red solid curve
in this figure is the regressed high-temperature branch CP(τ ) in (5.1) with τ � 1/(t − 1), t > 1, substituted (shortcut CP(t)). The
data points depicted in Fig. 16 are the same as in Fig. 17.

Figure 18 shows the Index function, i.e., the Log–Log slope (red solid curve) of the regressed high-temperature heat capacity
CP(τ ) in (5.1),

Index[CP(τ )] � α0 + β1
(τ/b1)β1/η1

1 + (τ/b1)β1/η1
− β2

(τ/b2)β2/η2

1 + (τ/b2)β2/η2
+ β3

(τ/b3)β3/η3

1 + (τ/b3)β3/η3
. (5.3)

To relate Figs. 17, 18, we have plotted data points (τi , Index[CP(τi )])i�1,...,N (open squares) on the Index curve, using the abscissas
τi of the high-temperature data points (τi ,CP,i )i�1,...,N in Fig. 17 (also indicated by open squares).
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Fig. 14 Isobaric heat capacity CP(τ̂ ) of water at critical pressure, parametrized with reduced temperature τ̂ � |T/Tc − 1|. Apart from this reparametrization,
the caption of Fig. 12 is applicable. The red and green solid curves show the high- and low-temperature heat-capacity branches CP(τ � 1/τ̂ ) in (2.5) and
Table 2, regressed from the depicted data sets, cf. Section 4. The residuals of the least-squares fits of the high- and low-temperature branches of CP(τ̂ ) are
shown in the lower panels, indicating deviations of less than one percent throughout the data range. The red and green dashed lines depicting the critical
power laws CP(τ̂ → 0) ∼ A±τ̂1/δ−1 are the asymptotes of the high- and low-temperature branches of CP(τ̂ )

5.2 Regression of the heat capacity in the subcritical regime between Tmelt and Tc

The data set (τi ,CP,i ) used for the regression of the isobaric heat capacity of hydrogen at critical pressure in the low-temperature
interval [Tmelt, Tc] comprises 92 data points between Tmelt � 13.957 K and 32.6 K (filled squares in Figs. 16 and 17, cf. Refs. [2,
3]). The least-squares fit of the low-temperature branch of CP(τ ) is performed with the broken power law

CP(τ ) � a0τ
α0

1

(1 + (τ/b1)β1/η1 )η1
(1 + (τ/b2)β2/η2 )η2 . (5.4)

The amplitudes a0, bk and exponents βk , ηk are positive, and the exponent α0 is real. The asymptotic power-law scaling of CP(τ )
in (5.4) reads CP(τ → ∞) ∼ A−τ 1−1/δ , with

1 − 1/δ � α0 − β1 + β2, A− � a0b
β1
1 /bβ2

2 . (5.5)
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Fig. 15 Index functions of the isobaric heat capacity of water at critical pressure, parametrized with reduced temperature τ̂ � |T/Tc − 1|. The red and
green solid curves depict the Log–Log slope Index[CP(τ � 1/τ̂ )] � −Index[CP(τ )]|τ�1/τ̂ of the high- and low-temperature branches of the heat capacity
CP(τ̂ ) in Fig. 14. The Index functions are defined in (2.7) and Table 2, subject to the substitution τ � 1/τ̂ and an overall sign change as indicated. The open
squares on the high-temperature (T > Tc) Index curve and the filled squares on the low-temperature (T < Tc) Index curve correspond to the heat-capacity
data points in Fig. 14. The scaling exponent 1 − 1/δ � 0.7912 of the isobaric heat capacity is represented by the black dashed horizontal line, which is
the asymptote of the Index curves. This horizontal line is also a plot of the constant Index function (Log–Log slope) of the critical power laws A±τ̂1/δ−1

asymptotic to the high- and low-temperature branches of CP(τ̂ ) in Fig. 14. The asymptotic power laws are depicted as parallel red and green dashed straight
lines in Fig. 14

We use the scaling exponent 1 − 1/δ � 0.7912 to eliminate the exponent β2 from CP(τ ) in (5.4) by way of the first equation in
(5.5).

The least-squares regression of CP(τ ) in (5.4) is based on the subcritical data set (τi ,CP,i )i�1,...,N , τi � 1/(1 − ti ), N � 92,
indicated above. The fitting parameters a0,α0,(bk, βk, ηk)k�1,2 and the derived scaling amplitude A− are listed in Table 2. The
regressed CP(τ ) is shown in Fig. 17 as green solid curve. The red and green straight lines in Fig. 17 depict the asymptotic power-law
scaling CP ∼ A±τ 1−1/δ of the high- and low-temperature branches (5.1) and (5.4) of CP(τ ).

In Fig. 16, the regressed subcritical CP(τ � 1/(1 − t)) is plotted as a function of reduced temperature t � T/Tc < 1 (shortcut
CP(t), green solid curve); the data points depicted in this figure are the same as in Fig. 17.

The Index function (Log–Log slope) of the low-temperature heat-capacity branch CP(τ ) in (5.4) (and Fig. 17),

Index[CP(τ )] � α0 − β1
(τ/b1)β1/η1

1 + (τ/b1)β1/η1
+ β2

(τ/b2)β2/η2

1 + (τ/b2)β2/η2
, (5.6)

is depicted in Fig. 18 as green solid curve. On this Index curve, we have indicated data points (τi , Index[CP(τi )])i�1,...,N (filled
squares) with the same abscissas as the subcritical data points (τi ,CP,i )i�1,...,N in Fig. 17 (also depicted by filled squares).

Outside the interval [32.6 K, 33.8 K], the Index functions in Fig. 18 do not exceed 0.7, except for a section of the subcritical
branch close to the melting point. The complement of this interval is covered by the open and filled squares in Figs. 17 and 18,
representing empirical data sets of the critical isobaric heat capacity of hydrogen from Refs. [2, 3]. The slope of 1 − 1/δ � 0.7912
defining the critical power-law scaling of the isobaric heat capacity at critical pressure is only reached for temperatures extremely
close to Tc � 33.145 K, in the interval |T/Tc − 1| < 10−4, see Fig. 18, far outside the temperature range of the empirical data of
Refs. [2, 3]. Figures 19 and 20 show the high- and low-temperature heat-capacity branches and their Index functions reparametrized
with reduced temperature τ̂ � |t − 1|, t � T/Tc. The red and green straight lines in Fig. 19 depict the asymptotic power-law scaling
CP ∼ A±τ̂ 1/δ−1.
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Fig. 16 Isobaric heat capacity of hydrogen at critical pressure. Data points from Refs. [2, 3] (which are synthetic data based on a multiparameter EoS [7]),
covering the low-temperature interval from the melting point Tmelt � 13.957 K up to 32.6 K (92 data points, filled squares) and the high-temperature
range from 33.8 K to 1000 K (398 data points, open squares). The critical temperature of hydrogen is Tc � 33.145 K. Depicted is a Log–Log (decadic
double-logarithmic) plot of the isobaric heat capacity CP(t) of hydrogen (at critical pressure Pc � 1.2964 MPa) in reduced temperature t � T/Tc. The lower
and upper temperature limits are indicated by the vertical green and red dotted lines. The least-squares regression is performed with the broken power-law
density CP(τ ) in (5.1) (high-temperature branch, τ � 1/(t − 1), t > 1, red solid curve) and (5.4) (low-temperature branch, τ � 1/(1 − t), t < 1, green solid
curve) and fitting parameters in Table 2

6 Conclusion

The scaling theory of critical-point singularities in thermodynamic functions is experimentally amply evidenced, being largely
consistent with the measured critical exponents and amplitude ratios [1, 8–19]. (There are a few exceptions, though. For instance,
the scaling exponent β of the order parameter was measured for two binary mixtures in Refs. [42, 43] and found to exceed the
calculated 3D Ising exponent β � 0.3264 by about 12 percent.) The predicted power-law scaling is observable in the immediate
vicinity of the critical point, leaving aside gravitational rounding effects, which set in at about |T/Tc − 1| ≈ 10−4, cf., e.g., Ref.
[20].

In experimental papers, it is customary to consider a wider interval, typically |T/Tc − 1| < 0.1, and least-squares regression
based on a perturbative ascending series expansion in reduced temperature, obtained by adding correction-to-scaling terms to the
asymptotic power law in this extended scaling regime, cf., e.g., Refs. [11, 13, 17]. The power-law exponents are mostly identified
with the calculated scaling exponents of the respective universality class, and the series coefficients are obtained by linear regression,
in this way achieving consistency with renormalization-group calculations and universality.

The ideal power-law scaling interval of the isobaric heat capacity at critical pressure is particularly narrow (|T/Tc − 1| < 10−5

for nitrogen, methane and water, and |T/Tc − 1| < 10−4 for hydrogen), as illustrated by Index functions in Figs. 5, 10, 15 and 20.
The topic of this paper was the modeling of the critical isobaric heat capacity CP(T, Pc) of fluids over a much wider temperature
range far beyond the power-law scaling regime and the extended scaling regime where power-law scaling still holds with perturbative
corrections. Closed-form analytic representations of the isobaric heat capacity at critical pressure were derived for nitrogen, methane,
water and hydrogen, which are applicable from the melting point to the high-temperature regime where dissociation sets in.

Over this temperature range, it is not feasible to use perturbative series expansions around the critical temperature. In a safe
distance from the scaling regime (quantified for the individual fluids at the beginning of each of Sects. 2, 3, 4, 5 in terms of
temperature intervals), there are plenty of reliable precision data available [2, 3] for the heat capacity of the fluids studied in this
paper, and we used a set of elementary closed-form distribution functions that allow for accurate nonlinear least-squares regression
in the mentioned temperature range. (In the case of hydrogen, the upper temperature limit of the data range is 1000 K; dissociation
into an electron–proton plasma occurs at around 5000 K.) As summarized in the caption of Table 2, the regressed distributions
are structured as broken power laws factorizing as CP(τ ) � a0τ

α0
∏n

k�1 (1 + (τ/bk )βk/|ηk |) ηk and are parametrized with reciprocal
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Fig. 17 Isobaric heat capacity CP(τ ) of hydrogen at critical pressure, parametrized with the scaling variable τ � 1/|T/Tc − 1|. The open and filled squares
are data points from Refs. [2, 3], the same as depicted in Fig. 16. In the high-temperature regime, T/Tc > 1, the scaling variable is τ � 1/(T/Tc − 1), and
the data points are depicted as open squares. In the low-temperature regime, T/Tc < 1, the scaling variable is τ � 1/(1 − T/Tc), and the data points are
shown as filled squares. The red and green solid curves are the high- and low-temperature heat-capacity branches CP(τ ) in (5.1) (for T > Tc) and (5.4) (for
T < Tc) regressed from the depicted data sets, cf. Table 2 and Sect. 5. The χ2 functional used for the regression is stated in (7.6), and the residuals of the
least-squares fits of the high- and low-temperature branches are shown in the lower panels. The red and green dashed lines representing the critical power
laws, cf. (5.2) and (5.5), are the asymptotes of the high- and low-temperature branches of CP(τ ) in (5.1) and (5.4). These straight lines have a Log–Log slope
of 1 − 1/δ � 0.7912, which is the scaling exponent of the isobaric heat capacity at critical pressure

reduced temperature τ � 1/|T/Tc − 1|. The fitting parameters were constrained to reproduce the asymptotic power-law scaling ∝
|1 − T/Tc|1/δ−1 with calculated scaling exponent 1 − 1/δ.

A systematic regression method for multiply broken power-law densities is explained in Appendix 1, and the accuracy of the least-
squares fits to the experimental data sets is documented in Table 2 by the recorded value of the minimized least-squares functional of
the respective fluid and, more importantly, by the residual plots in Figs. 2, 7, 12 and 17, which show the local percentage deviations of
the data points from the regressed high- and low-temperature branches of the heat capacity. In Figs. 4, 9, 14 and 19, the regressed heat
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Fig. 18 Index functions of the critical isobaric heat capacity of hydrogen, parametrized with scaling variable τ � 1/|T/Tc − 1|. The red and green solid
curves depict the Log–Log slope Index[CP(τ )] � d logCP(τ )/d log τ of the high- and low-temperature heat-capacity branchesCP(τ ), cf. Section 5. Log–Log
plots of CP(τ ) at critical pressure, for T > Tc (cf. (5.1)) and T < Tc (cf. (5.4)), are shown in Fig. 17 as red and green solid curves, respectively. The
plotted Index functions Index[CP(τ )] are stated in (5.3) (for T > Tc, red solid curve) and (5.6) (for T < Tc, green solid curve), with parameters in Table
2. The open squares on the (red solid) high-temperature Index curve and the filled squares on the (green solid) low-temperature Index curve correspond to
the heat-capacity data points in Fig. 17. The vertical red and green dotted lines indicate the same temperature intervals as in Fig. 17. The scaling exponent
1 − 1/δ � 0.7912 of the heat capacity is represented by the black dashed horizontal line, which is the asymptote of the depicted Index curves (i.e., the
constant τ → ∞ limit of Index[CP(τ )] in (5.1) and (5.4)). This horizontal line is also a plot of the constant Index function (Log–Log slope) of the asymptotes
of the high- and low-temperature branches of CP(τ ), depicted as parallel red and green dashed straight lines in Fig. 17. The latter show the asymptotic power
laws (5.2) and (5.5) of the isobaric heat capacity at critical pressure

capacities of nitrogen, methane, water and hydrogen are depicted in reduced-temperature parametrization over several logarithmic
decades, illustrating the non-perturbative analytic extension of the critical scaling regime to cover the entire temperature range from
the melting point to the high-temperature regime, up to dissociation temperatures.

Data Availability Statement The data sets analyzed during the current study are available on the NIST web pages https://www.nist.gov/srd/refprop and
https://webbook.nist.gov/chemistry/fluid/, see Refs. [2, 3].

Appendix 1

Nonlinear regression of multiply broken power laws subject to parameter constraints

The least-squares regression sketched in this appendix will be exemplified with the broken power law (2.1), which is parametrized
with positive amplitudes a0, bk , positive exponents βk , ηk and real exponent α0. The amplitudes in (2.1) can be written as bk � 10b10,k ,
with real exponent b10,k as fitting parameter, which is adapted to the decadic Log–Log representations of the heat capacity CP(τ ) in
the figures.

When minimizing the least-squares functional (defined below), we use rescaled parameters b̂k ,β̂k ,η̂k related to bk ,βk ,ηk in (2.1)
by

b̂k � (10b10,k )−βk/ηk , β̂k � βk/ηk, η̂k � ηk, (7.1)

and inversely,

b10,k � Log(b̂−1/β̂k
k ), βk � β̂k η̂k, ηk � η̂k . (7.2)
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Fig. 19 Isobaric heat capacityCP(τ̂ ) of hydrogen at critical pressure, parametrized with reduced temperature τ̂ � |T/Tc − 1|. Apart from this reparametriza-
tion, the caption of Fig. 17 applies. The red and green solid curves show the high- and low-temperature heat-capacity branches CP(τ � 1/τ̂ ) in (5.1) (for
T > Tc) and (5.4) (for T < Tc) regressed from the depicted data sets, cf. Section 5 and Table 2. The residuals of the least-squares fits of the high- and
low-temperature branches of CP(τ̂ ) are depicted in the lower panels, indicating deviations of less than one percent from the data points. The parallel red and
green dashed straight lines depicting the critical power lawsCP(τ̂ → 0) ∼ A±τ̂1/δ−1, cf. (5.2) and (5.5), are the asymptotes of the high- and low-temperature
branches of CP(τ̂ )

(Log denotes the decadic logarithm, and bk � 10b10,k .) The reparametrized CP(τ ) in (2.1) can be written as

CP(τ ) � a0τ
α0

1

(1 + b̂1τ
β̂1 ) η̂1

(1 + b̂2τ
β̂2 ) η̂2 (1 + b̂3τ

β̂3 ) η̂3 . (7.3)

The exponents β̂k ,η̂k and amplitudes b̂k are positive like βk ,ηk ,bk .
The asymptotic power-law scaling of CP(τ ) in (7.3) reads CP(τ → ∞) ∼ A+τ 1−1/δ , with exponent and amplitude related to the

rescaled fitting parameters by

1 − 1/δ � α0 − β̂1η̂1 + β̂2η̂2 + β̂3η̂3, A+ � a0b̂
η̂2
2 b̂η̂3

3 /b̂η̂1
1 , (7.4)

123



  457 Page 22 of 23 Eur. Phys. J. Plus         (2023) 138:457 

Fig. 20 Index functions of the isobaric heat capacity of hydrogen at critical pressure, parametrized with reduced temperature τ̂ � |T/Tc − 1|. The red and
green solid curves depict the Log–Log slope Index[CP(τ � 1/τ̂ )] � −Index[CP(τ )]|τ�1/τ̂ of the high- and low-temperature branches of the heat capacity
CP(τ̂ ) in Fig. 19, cf. (5.1) and (5.4). The Index functions are stated in (5.3) and (5.6) (with parameters in Table 2), subject to the substitution τ � 1/τ̂ and an
overall sign change as indicated. The open squares on the high-temperature (T > Tc) Index curve and the filled squares on the low-temperature (T < Tc)
Index curve correspond to the heat-capacity data points in Fig. 19. The scaling exponent 1 − 1/δ � 0.7912 of the isobaric heat capacity at critical pressure
is indicated by the black dashed horizontal line, which is the asymptote of the depicted Index curves. This horizontal line is also a plot of the constant Index
function (Log–Log slope) of the critical power laws A±τ̂1/δ−1 asymptotic to the high- and low-temperature branches of CP(τ̂ ) in Fig. 19. The critical power
laws are depicted as parallel red and green dashed straight lines in Fig. 19

which is the counterpart to Eqs. (2.2) in the new parametrization. By identifying 1−1/δ with the calculated scaling exponent 0.7912,
the first identity in (7.4) becomes a constraint on the parameters, which can be used to eliminate the exponent α0 from CP(τ ) in
(7.3), arriving at

CP(τ ) � A+τ 1−1/δ 1

(1 + b̂−1
1 τ−β̂1 ) η̂1

(1 + b̂−1
2 τ−β̂2 ) η̂2 (1 + b̂−1

3 τ−β̂3 ) η̂3 , (7.5)

with positive fitting parameters A+,b̂k ,β̂k ,η̂k , k � 1, 2, 3. The exponent 1 − 1/δ � 0.7912 is predetermined input, and the amplitude
a0 in (7.3) is calculated from the regressed parameters via the second equation in (7.4).

The least-squares functional used for the regression reads

χ2(A+, (b̂k, β̂k, η̂k)k�1,2,3) �
N∑

i�1

(CP(τi ) − CP,i )2

C2
P,i

, (7.6)

where (τi ,CP,i )i�1,...,N are the data points enumerated in Sect. 2.1 and CP(τ ) is the broken power law (7.5) depending on the fitting
parameters A+,(b̂k, β̂k, η̂k)k�1,2,3. Once these parameters are determined by minimization of the χ2 functional (7.6), we find the
parameters a0,α0 and (bk, βk, ηk)k�1,2,3 of CP(τ ) in (2.1) by way of (7.2) and (7.4), cf. Table 2.

An efficient Mathematica® [44] routine to minimize a nonlinear χ2 functional such as (7.6) is FindMini-
mum[{chisquared[…],constraints},{initial values},MaxIterations→nmax]. The constraints are positivity constraints
b̂k > 0 & & β̂k > 0 & & η̂k > 0, where the double ampersand denotes the logical AND. Alternatively, positivity

constraints for the iteration can be avoided by replacing the parameters (b̂k, β̂k, η̂k) by (
√
b̂2
k ,

√
β̂2
k ,

√
η̂2
k ) in (7.5).

To find reasonably accurate initial values for the fitting parameters, which is essential in nonlinear multiparameter regression, one
usesCP(τ ) in parametrization (2.1) rather than (7.5). The factors in (2.1) can be ordered by increasing amplitude, b1 < b2 < ... < bn
(with n � 3 in (2.1)). In the range τ << bk , the factors defined by the amplitudes bk, bk+1, ..., bn are close to one and can be
dropped. Therefore, an initial guess can be obtained by visually fitting the factors one by one, starting with the simple power law
a0τ

α0 in (2.1) and increasing the τ range in each step by adding the respective data points and the respective factor. The amplitudes
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bk are the break points between the power-law segments (which are straight line segments in Log–Log plots) and the exponents ηk
determine the extent (curvature) of the transitional regions.
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